[NOI2009]变换序列(二分图匹配)
我们先不考虑字典序最小,先来求出一种可行解。
不难发现,对于每一个i值,它所对应的T值在模n意义下最多两个,于是我们可以用二分图匹配来判断。
那字典序最小呢?
回顾一下二分图匹配的算法:网络流?貌似不好做到字典序最小,所以我们来看匈牙利算法
匈牙利算法是从1~n枚举点,看是否能合法,如果它要的边没被连就连,如果被连过了就一直判断是否有办法可以让前面的匹配换一种连接方式,便是用这种连边方式。
如果实在没有办法了,就只能委屈一下自己了。
那么这样匹配能否使字典序最小呢?
显然是不行的,即使我们让第一条边找到了字典序最小的点,如果后面的点请求更换,而且正好又可以更换找到更大匹配,那么就不一定是字典序最小了(毒瘤)。
那么我们可以怎么做呢?
我们逆向思维,考虑从后往前加边,后面边先选字典序小的,如果前面的边需要就直接给了,这样就可以保证字典序最小了。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
il int read()
{
re int x=0,f=1; re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define maxn 10005
int n,m,d[maxn],aa[2][maxn],vis[maxn],cnt,ans,match[maxn],to[maxn];
bool dfs(int u)
{
for(re int i=0;i<2;++i)
{
int v=aa[i][u];
if(vis[v]) continue;
vis[v]=1;
if(match[v]==-1||dfs(match[v])) return match[v]=u,to[u]=v,1;
}
return 0;
}
int main()
{
n=read();
memset(match,-1,sizeof(match));
for(re int i=0;i<n;++i) d[i]=read();
for(re int i=0;i<n;++i)
{
int a=(i-d[i]+n)%n,b=(i+d[i])%n;
if(a>b) swap(a,b);
aa[0][i]=a,aa[1][i]=b;
}
for(re int i=n-1;~i;--i)
{
memset(vis,0,sizeof(vis));
if(dfs(i)) ++ans;
}
if(ans<n) return puts("No Answer"),0;
for(re int i=0;i<n;++i) printf("%d ",to[i]);
return 0;
}
[NOI2009]变换序列(二分图匹配)的更多相关文章
- Luogu P1963 [NOI2009]变换序列(二分图匹配)
P1963 [NOI2009]变换序列 题意 题目描述 对于\(N\)个整数\(0,1, \cdots ,N-1\),一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中\(T_i \in ...
- 【BZOJ1562】【jzyzOJ1730】【COGS409】NOI2009变换序列 二分图匹配
[问题描述] 对于N个整数0, 1, ……, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换 ...
- BZOJ1562: [NOI2009]变换序列(二分图 匈牙利)
Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30%的数据中N≤50:60%的数据中N≤ ...
- BZOJ 1562 变换序列(二分图匹配)
显然每个位置只有两个情况,所以用二分图最大匹配来求解. 如果二分图有完全匹配,则有解. 关键是如何求最小的字典序解. 实际上用匈牙利算法从后面开始找增广路,并优先匹配字典序小的即可. # includ ...
- BZOJ 1562 变换序列 二分图匹配+字典序
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1562 题目大意: 思路: 逆序匹配,加边匹配的时候保持字典序小的先加入. 具体证明:h ...
- Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配
题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆ 输入文件:transform.in 输出文 ...
- BZOJ 1562 [NOI2009] 变换序列
[NOI2009] 变换序列 [题解] 就是有一个序列,每个位置可以填两个数,不可重复,问最小字典序. 显然,可以建一个二分图,判合法就是找完美匹配. 那怎么弄最小字典序呢?有好多种解法,我这里给出了 ...
- [Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...
- noi2009变换序列
noi2009变换序列 一.题目 1843 变换序列 2009年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 ...
随机推荐
- 更新下载库update绝对详解
下载更新apk,基本上每个app都需要的功能,来看看吧,肯定有你想要的,以前都是自己写,近期想借助第三方的一个库来做,功能齐全,感觉不错,记录使用过程,虽然官方也有使用教程,不过毕竟粗略,网上也能搜到 ...
- Android八门神器(一): OkHttp框架源码解析
HTTP是我们交换数据和媒体流的现代应用网络,有效利用HTTP可以使我们节省带宽和更快地加载数据,Square公司开源的OkHttp网络请求是有效率的HTTP客户端.之前的知识面仅限于框架API的调用 ...
- SqlServer主键和自增长设置
SqlServer主键和自增长设置 Intro 有时候有些 sql 语句有些不太记得了,谨以此文备忘. 设置主键以及自增长可分两种情况: 新创建表 表已创建但是没有设置主键和自增长 新创建表 创建表 ...
- 安装vmware-tools遇the path "" is not valid path to the gcc binary和the path "" is not a valid path to the 3.10.0-327.e17.x86_64 kernel headers问题解决
#./vmware-install.pl踩点: 1.the path "" is not valid path to the gcc binary 2.the path " ...
- Oracle的ORA-02292报错:违反完整性约束,已找到子记录
第一种方法: 第一步就是找到子表的记录: select a.constraint_name, a.table_name, b.constraint_name from user_constraints ...
- Cs231n-assignment 2作业笔记
assignment 2 assignment2讲解参见: https://blog.csdn.net/BigDataDigest/article/details/79286510 http://ww ...
- java.util.NoSuchElementException问题定位
Iterator 迭代器越界 例子如下: Iterator i = set.iterator(); while (i.hasNext()) { System.out.println(i.next()) ...
- 距离放弃python又近了一大步,而然只是第四天
今天是周末后的第一天,周末四处浪浪浪,所以在周一的时候就要狠狠的复习之前的东西了,之后从第一天的计算机基础开始复习,具体内容请翻阅前三篇随笔,主要是要仔细看看,怕学了后面的忘了前面的,今天引进的第一个 ...
- web框架开发-Django组件cookie与session
http协议的每一次都是无保存状态的请求,这会带来很多的不方便,比如,一刷新网页,或者进入该网页的其他页面,无法保存之前的登录状态.为了解决类似这样的问题,引入了会话跟踪 会话跟踪技术 1 什么是会话 ...
- [LeetCode] 5. 最长回文子串
题目链接:https://leetcode-cn.com/problems/longest-palindromic-substring/ 题目描述: 给定一个字符串 s,找到 s 中最长的回文子串.你 ...