3阶马尔可夫链 自然语言处理python
一、简介:
把每三个三个单词作为一个整体进行训练。
举一个例子:
input:
my dream is that I can be an engineer, so I design more applications for people to use.
my dream is that I can be a bird, so I can fly to everywhere I want.
it is also my dream that I can be a house, so I can warm you in the cold winter.
生成的马尔可夫链:
{'START': ['my dream is'], 'my dream is': ['that i can'], 'dream is that': ['i can be'], 'is that i': ['can be a'], 'that i can': ['be a house,'], 'i can be': ['a house, so'], 'can be an': ['engineer, so i'], 'be an engineer,': ['so i design'], 'an engineer, so': ['i design more'], 'engineer, so i': ['design more applications'], 'so i design': ['more applications for'], 'i design more': ['applications for people'], 'design more applications': ['for people to'], 'more applications for': ['people to use.\nmy'], 'applications for people': ['to use.\nmy dream'], 'for people to': ['use.\nmy dream is'], 'people to use.\nmy': ['dream is that'], 'to use.\nmy dream': ['is that i'], 'use.\nmy dream is': ['that i can'], 'can be a': ['house, so i'], 'be a bird,': ['so i can'], 'a bird, so': ['i can fly'], 'bird, so i': ['can fly to'], 'so i can': ['warm you in'], 'i can fly': ['to everywhere i'], 'can fly to': ['everywhere i want.\nit'], 'fly to everywhere': ['i want.\nit is'], 'to everywhere i': ['want.\nit is also'], 'everywhere i want.\nit': ['is also my'], 'i want.\nit is': ['also my dream'], 'want.\nit is also': ['my dream that'], 'is also my': ['dream that i'], 'also my dream': ['that i can'], 'my dream that': ['i can be'], 'dream that i': ['can be a'], 'be a house,': ['so i can'], 'a house, so': ['i can warm'], 'house, so i': ['can warm you'], 'i can warm': ['you in the'], 'can warm you': ['in the cold'], 'warm you in': ['the cold winter.'], 'you in the': ['cold winter.'], 'in the cold': ['winter.'], 'END': ['the cold winter.', 'winter.', 'cold winter.']}
生成的文本:
my dream is that i can be a house, so i can warm you in the cold winter.
代码:
# I sperate the input.txt with space, and use dictionary to store the next three words after the current 3 words.
# in the same time, store the first three word as the beginning, and the last three or two or one words as the end
# how to generate output.txt: form the start, start to look for the next three words in ramdom, once meets the end, the geration is end.
import random fhand=open("E:\\a2.txt",'r',encoding='UTF-8')
dataset_file=fhand.read() # dataset_file='my friend makes the best raspberry pies'
dataset_file=dataset_file.lower().split(' ')
model={} for i, word in enumerate(dataset_file):
if i == len(dataset_file) - 3:
model['END'] = model.get('END', []) + [dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]]
model['END'] = model.get('END', []) + [dataset_file[i + 2]]
model['END'] = model.get('END', []) + [dataset_file[i + 1] +" "+dataset_file[i + 2]]
elif i == 0:
model['START'] = model.get('START', []) + [dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]]
# model['START']=model.get('START',[])+[dataset_file[i]]
# model['START']=model.get('START',[])+[dataset_file[i]+" "+dataset_file[i+1]]
model[dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]] = model.get(word, []) + [
dataset_file[i + 3] + " " + dataset_file[i + 4] + " " + dataset_file[i + 5]]
elif i <= (len(dataset_file) - 6):
model[dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]] = model.get(word, []) + [
dataset_file[i + 3] + " " + dataset_file[i + 4] + " " + dataset_file[i + 5]]
elif i == (len(dataset_file) - 5):
model[dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]] = model.get(word, []) + [
dataset_file[i + 3] + " " + dataset_file[i + 4]]
elif i == (len(dataset_file) - 4):
model[dataset_file[i] + " " + dataset_file[i + 1] + " " + dataset_file[i + 2]] = model.get(word, []) + [
dataset_file[i + 3]]
print(model) generated = []
while True:
if not generated:
words = model['START']
elif generated[-1] in model['END']:
break
else:
words = model[generated[-1]]
generated.append(random.choice(words)) fhand=open("E:\output.txt",'a')
for word in generated:
fhand.write(word+" ") print(word,end=' ')
3阶马尔可夫链 自然语言处理python的更多相关文章
- Python标准模块--functools
1 模块简介 functools,用于高阶函数:指那些作用于函数或者返回其它函数的函数,通常只要是可以被当做函数调用的对象就是这个模块的目标. 在Python 2.7 中具备如下方法, cmp_to_ ...
- 自然语言26_perplexity信息
http://www.ithao123.cn/content-296918.html 首页 > 技术 > 编程 > Python > Python 文本挖掘:简单的自然语言统计 ...
- 可爱的 Python : Python中的函数式编程,第三部分
英文原文:Charming Python: Functional programming in Python, Part 3,翻译:开源中国 摘要: 作者David Mertz在其文章<可爱的 ...
- Python 与 Javascript 之比较
最近由于工作的需要开始开发一些Python的东西,由于之前一直在使用Javascript,所以会不自觉的使用一些Javascript的概念,语法什么的,经常掉到坑里.我觉得对于从Javascript转 ...
- python学习菜单
一.python简介 二.python字符串 三.列表 四.集合.元组.字典 五.函数 六.python 模块 七.python 高阶函数 八.python 装饰器 九.python 迭代器与生成器 ...
- Python 与 Javascript 比较
最近由于工作的需要开始开发一些Python的东西,由于之前一直在使用Javascript,所以会不自觉的使用一些Javascript的概念,语法什么的,经常掉到坑里.我觉得对于从Javascript转 ...
- 时间序列算法理论及python实现(1-算法理论部分)
如果你在寻找时间序列是什么?如何实现时间序列?那么请看这篇博客,将以通俗易懂的语言,全面的阐述时间序列及其python实现. 就餐饮企业而言,经常会碰到如下问题. 由于餐饮行业是胜场和销售同时进行的, ...
- MyFirstDay(附6篇python亲历面试题)
一直以来都是在看别人写的内容,学习前辈们的经验,总感觉自己好像没有什么值得拿出来分享和交流的知识,最近在准备换工作(python后端开发),坐标上海,2019年3月,半个月面了6家(感觉效率是真不高. ...
- Python 练习汇总
1. Python练习_Python初识_day1 2. Python练习_Python初识_day2 3. Python练习_初识数据类型_day3 4. Python练习_数据类型_day4 5. ...
随机推荐
- ASP.NET MVC页面报错System.InvalidOperationException The view found at '~/Views/Home/Index.cshtml' was not created.
Application Exception System.InvalidOperationException The view found at '~/Views/Home/Index.cshtml' ...
- UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence
=================================版权声明================================= 版权声明:原创文章 谢绝转载 请通过右侧公告中的“联系邮 ...
- ThreadPoolExecutor 几个疑惑与解答
任务是否都要先放入队列? 当工作线程数小于核心线程数时,任务是不会经过队列,而是直接创建 Worker 时传入.但是如果工作线程数已经大于核心线程数,则任务是要先放入队列的.实际上只要是被创建的工作线 ...
- 关于atom无限意外退出的一个原因
atom很好用,也有开发直接使用这个工具进行编码,我经常使用,最近突然会报意外退出的错误. 再重启应用依然会报这个错,然后重启电脑后可以正常使用. 非常疑惑. 原来,是因为Shadowsocks开启的 ...
- Windows下Redis安装过程
1.去github下载Redis-x64-2.8.2402.zip压缩包 2.将压缩包解压到你要安装的目录下 3.将redis设置为开机自启动服务 redis-server --service-ins ...
- react native 键盘弹起时必须点击两次才能成功
在scrollview或者flatlist上设置一个参数,即可解决 keyboardShouldPersistTaps="handled"
- django_视图层_编写url
URL的配置 django中,url也称urlconf,默认的django项目设定两个url地址,分别是admin站点管理和首页地址.from diango.urls import path,incl ...
- 64位ubuntu16.04系统安装tensorflow_cpu
ubuntu16.04安装tensorflow_cpu 一.安装anaconda: ①.下载anaconda包:Anaconda3-5.2.0-Linux-x86_64.sh 这是python3.6. ...
- slf4j的使用
1.导入jar包 <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api< ...
- Spring MVC中一般类使用service
在Spring MVC中,Controller中使用service只需使用注解@Resource就行,但是一般类(即不使用@Controller注解的类)要用到service时,可用如下方法: 1.S ...