[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.
证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\sex{{\bf y}\times\cfrac{\p {\bf v}}{\p t}}\rd x,\\ \int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t&=\int_{S_t} ({\bf y}\times {\bf T}{\bf \nu})\rd S_t\\ &=\int_{S_0} ({\bf y}\times {\bf P}{\bf n})\rd S_0,\\ \int_{G_t}\rho({\bf y}\times{\bf b})\rd y&=\int_{G_0} \rho_0({\bf y}\times{\bf b})\rd x \eea \eeex$$ 知 $$\bex \int_{G_0}\rho_0{\bf y}\times\sex{\cfrac{\p{\bf v}}{\p t}-{\bf b}}\rd x =\int_{S_0}({\bf y}\times{\bf P}{\bf n})\rd S_0. \eex$$ 由动量矩守恒定律 (3. 43) 知 $$\bex {\bf I}\equiv \int_{G_0} {\bf y}\times \Div_x{\bf P}\rd x =\int_{S_0} ({\bf y}\times{\bf P}{\bf n})\rd S_0\equiv {\bf J}. \eex$$ 写成分量形式为 $$\beex \bea I_i&=\int_{G_0} \sum_{j,k,l}\ve_{ijk} y_j\cfrac{\p P_{kl}}{\p x_l}\rd x,\\ J_i&=\int_{S_0}\sum_{j,k}\ve_{ijk}y_j({\bf P}{\bf n})_k\rd S_0\\ &=\int_{S_0}\sum_{j,k,l} \ve_{ijk} y_jP_{kl}n_l\rd S_0\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} \cfrac{\p}{\p x_l}(y_jP_{kl})\rd x\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} f_{jl}P_{kl}+y_j\cfrac{\p p_{kl}}{\p x_l}\rd x. \eea \eeex$$ 于是 $$\bex \sum_{j,k,l}\ve_{ijk}f_{jl}P_{kl}=0. \eex$$ 分别取 $i=1,2,3$ 有 $$\beex \bea \sum_l (f_{2l}P_{3l}-f_{3l}P_{2l})&=0,\\ \sum_l (f_{3l}P_{1l}-f_{1l}P_{3l})&=0,\\ \sum_l (f_{1l}P_{2l}-f_{2l}P_{1l})&=0. \eea \eeex$$ 此即 $$\bex ({\bf F}{\bf P}^T)_{23}=({\bf F}{\bf P}^T)_{32},\quad ({\bf F}{\bf P}^T)_{31}=({\bf F}{\bf P}^T)_{13},\quad ({\bf F}{\bf P}^T)_{12}=({\bf F}{\bf P}^T)_{21}; \eex$$ 或等价地, $$\beex \bea ({\bf F}{\bf P}^T)^T&={\bf F}{\bf P}^T,\\ {\bf P}{\bf F}^T&={\bf F}{\bf P}^T,\\ {\bf P}&={\bf F}{\bf P}^T{\bf F}^{-T},\\ {\bf F}^{-1}{\bf P}&=({\bf F}^{-1}{\bf P})^T,\\ {\bf \Sigma}&={\bf \Sigma}^T. \eea \eeex$$
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性的更多相关文章
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第1章习题5 偶极子的电场强度
试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...
- [物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...
随机推荐
- 事务的ACID属性,图解并发事务带来问题以及事务的隔离级别
事务的概述 事务是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行. 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源.通过将一组相关操作组 ...
- 认识多线程中start和run方法的区别?
一.认识多线程中的 start() 和 run() 1.start(): 先来看看Java API中对于该方法的介绍: 使该线程开始执行:Java 虚拟机调用该线程的 run 方法. 结果是两个线程并 ...
- SystemTap Beginners Guide
SystemTap 3.0 SystemTap Beginners Guide Introduction to SystemTap Edition 3.0 Red Hat, Inc. Don Do ...
- Java 8 新特性:6-Optional类
(原) 先看看上面的说明: /** * A container object which may or may not contain a non-null value. * If a value i ...
- [题解]P1856 [USACO5.5]矩形周长Picture
Loli 考试的题目之一 题目地址 \(N^2\)做法 #include <cstdio> #include <cstring> #define re register #de ...
- Generative Adversarial Nets[BEGAN]
本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...
- 【Swift 3.0】iOS 国际化切换语言
有的 App 可能有切换语言的选项,结合系统自动切换最简单的办法: fileprivate var localizedBundle: Bundle = { return Bundle(path: Bu ...
- Qt中的QWebView
一.Webkit了解 Webkit是一个开源的浏览器引擎,chrome也使用了作为核心.Qt中对Webkit做了封装,主要有以下几个类: QWebView :最常用的类,作为一个窗体控件 QWeb ...
- PHP之环境配置
我们的网站一般从开发到上线,整个过程会经历三个过程,本地开发->测试服测试->线上生产环境 对于不同环境下的配置也会不同,对于区分不同的环境是十分重要的. 1 域名判断法 使用的较多 ...
- centos7只rsync+inotify
环境: 操作系统:centos7.4 192.168.1.238 客户端 192.168.1.239 服务端 环境准备: 1.安装以下安装包lrzsz是xshell上传下载的安装包,可以忽略. yum ...