https://cloud.tencent.com/developer/news/190352

http://playground.tensorflow.org

PlayGround是一个在线演示、实验的神经网络平台,是一个入门神经网络非常直观的网站。这个图形化平台非常强大,将神经网络的训练过程直接可视化。同时也能让我们对Tensorflow有一个感性的认识。

PlayGround页面如图所示,主要分为DATA(数据),FEATURES(特征),HIDDEN LAYERS(隐含层),OUTPUT(输出层)。

PlayGround主页面

DATA一栏里提供了4种不同形态的数据,分别是圆形、异或、高斯和螺旋。平面内的数据分为蓝色和黄色两类。

四种数据形态

我们的目标就是通过神经网络将这两种数据分类,可以看出螺旋形态的数据分类是难度最高的。除此之外,PlayGround还提供了非常灵活的数据配置,可以调节噪声、训练数据和测试数据的比例和Batch size的大小。

噪声的影响

训练数据和测试数据的比例

Batch size大小

Batch size就是每批进入神经网络数据点的个数。

FEATURES一栏包含了可供选择的7种特征:X1、X2、X1X1、X2X2、X1X2、sin(X1)、sin(X2)。

7种特征

X1可以看成以横坐标分布的数据特征,X2是以纵坐标分布的数据特征,X1X1和X2X2是非负的抛物线分布,X1X2是双曲抛物面分布,sin(X1)和sin(X2)正弦分布。我们的目标就是通过这些特征的分布组合将两类数据(蓝色和黄色)区分开,这就是训练的目的。

HIDDEN LAYERS一栏可设置多少隐含层。一般来讲,隐含层越多,衍生出的特征类型也就越丰富,对于分类的效果也会越好,但不是越多越好,层数多了训练的速度会变慢,同时收敛的效果不一定会更好,后面也会提到。

隐含层结构

因为在这里是一个分类的问题,隐含层设置为两层,刚好对应输出的类型。层与层之间的连线粗细表示权重的绝对值大小,我们可以把鼠标放在线上查看权值,也可以点击修改。

OUTPUT一栏将输出的训练过程直接可视化,通过test loss和training loss来评估模型的好坏。

输出模型

除了主要的四个部分外,在界面上还有一列控制神经网络的参数,从左到右分别是,训练的开关、迭代次数、学习速率、激活函数、正则化、正则化率和问题的类型。

神经网络控制参数

我们接下来尝试了几个例子,考虑到图片太多,直接讲一些结论,读者可以自行去摸索。

首先考虑的是激活函数的影响,比较了一下Sigmoid函数和ReLU函数:

1.选择Sigmoid函数作为激活函数,明显能感觉到训练的时间很长,ReLU函数能大大加快收敛速度,这也是现在大多数神经网络都采用的激活函数。

2.当把隐含层数加深后,会发现Sigmoid函数作为激活函数,训练过程loss降不下来,这是因为Sigmoid函数反向传播时出现梯度消失的问题(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失)。

接着我们选用ReLU函数作为激活函数,比较一下隐含层数量对结果的影响:

1.我们选用了3层隐含层,每层特征个数为8,8,2的模型和6层隐含层,每层特征个数为8,8,8,8,8,2的模型。3层隐含层模型大概200步就达到了test loss为0.005,training loss为0.005,而6层隐含层模型跑了700步,test loss为0.015,training loss为0.005,有点过拟合。

8,8,2模型

8,8,8,8,8,2模型

隐含层的数量不是越多越好,层数和特征的个数太多,会造成优化的难度和出现过拟合的现象。

如果你感兴趣,很多测试你都可以尝试一下。通过神经网络,我们的系统自己就能学习到哪些特征是有效的,哪些特征是无效的,通过自己学习这些特征,然后判断问题。值得一提的是,最近很热的AlphaGo zero通过自我学习的过程,从无到有,打败了参照人类知识学习的AlphaGo,可见机器自我学习,自我进化的速度太快了,远远超越了人类历史经验的总结。人生苦短,快用Tensorflow!

來源:简书作者:MrLonelyZC88

链接:https://www.jianshu.com/p/5f83defc7615

推荐!PlayGround:可视化神经网络的更多相关文章

  1. 0、PlayGround可视化

    Tensorflow新手通过PlayGround可视化初识神经网络 是不是觉得神经网络不够形象,概念不够清晰,如果你是新手,来玩玩PlayGround就知道,大神请绕道. PlayGround是一个在 ...

  2. 推荐一个可视化的学习Git的好网站:LearnGitBranching

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:推荐一个可视化的学习Git的好网站:LearnGitBranching.

  3. PLAYGROUND 可视化

    PLAYGROUND 可视化 由 王巍 (@ONEVCAT) 发布于 2015/09/23 在程序界,很多小伙伴都会对研究排序算法情有独钟,并且试图将排序执行的过程可视化,以便让大家更清晰直观地了解算 ...

  4. 基于hadoop的电影推荐结果可视化

    数据可视化 1.数据的分析与统计 使用sql语句进行查询,获取所有数据的概述,包括电影数.电影类别数.人数.职业种类.点评数等. 2.构建数据可视化框架 这里使用了前端框架Bootstrap进行前端的 ...

  5. 学习推荐《Python神经网络编程》中文版PDF+英文版PDF+源代码

    推荐非常适合入门神经网络编程的一本书<Python神经网络编程>,主要是三部分: 介绍神经网络的基本原理和知识:用Python写一个神经网络训练识别手写数字:对识别手写数字的程序的一些优化 ...

  6. (006)增加Blazor WebAssembly子站,推荐一个可视化linux ssh客户端FinalShell

    增加一个Blazor WebAssembly子站,并添加来回链接. 同时推荐一个好用的ssh客户端:FinalShell,windows用户再也不怕linux黑窗口不会用了:) * 支持直接命令行; ...

  7. BERT大火却不懂Transformer?读这一篇就够了 原版 可视化机器学习 可视化神经网络 可视化深度学习

    https://jalammar.github.io/illustrated-transformer/ The Illustrated Transformer Discussions: Hacker ...

  8. 『cs231n』卷积神经网络的可视化与进一步理解

    cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...

  9. Tensorflow 搭建神经网络及tensorboard可视化

    1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(m ...

随机推荐

  1. PDF文件怎么转换成PPT

    在日常办公中大家都会发现PDF文件目前是比较常见的一种文件,有的时候大家会需要将PDF转换成PPT为了去更好的演示,毕竟PPT文件在演示方面具有着较好的特点,那如何将PDF文件转换成PPT文件呢,今天 ...

  2. tshark的抓包和解析

        1.   a.解析dhcp抓包文件   -r 读抓好的数据包文件   tshark -r 数据包路径 -Y 过滤条件   基本上可以运用 wirshark上的过滤条件     查找中继后dhc ...

  3. 关于HTTP协议学习(二)

    一,目录结构 HTTP Cookie & Session HTTP Cache (缓存) 二,HTTP Cookie & Session 1. 我们看到的 cookie 我们通过浏览器 ...

  4. [dev][go] 入门Golang都需要了解什么

    一 什么是Golang 首先要了解Golang是什么. Golang是一门计算机编程语言:可以编译成机器码的像python一样支持各种特性的高级语言. 由Google发明,发明人之一是K,就是C语言的 ...

  5. C++编程剖析 问题 方案 和设计准则

    1.Set的每个对象为什么会有三个指针? STL中的set使用方法详细!!!! 因为其底层是红黑树实现的,每个节点有两个子节点和一个父节点,所以需要三个指针. Set 与 map的区别是什么? 总的来 ...

  6. jacoco统计server端功能测试覆盖率

    jacoco可以统计,功能测试时,server代码调用的覆盖情况.这里对服务器端的java代码进行统计.   操作步骤如下:   第一步:更改server的启动脚本,使用jacocoagent.jar ...

  7. 读高性能MySql笔记

    1.1 MySQL逻辑架构 MySql服务器逻辑架构图 1.连接管理与安全性 每个客户端连接都会在服务器进程中拥有一个线程,这个连接的查询只会在这个单独的线程中执行,该线程只能轮流在某个CPU核心或者 ...

  8. 001-zookeeper 简介-paxos算法,zk简介,特点

    一.概述 大数据体系概述 1.1.什么是zookeeper 是Google的Chubby一个开源的实现,是Hadoop的分布式协调服务 它包含一个简单的原语集,分布式应用程序可以基于他实现同步服务,配 ...

  9. 学号 20175201张驰 《Java程序设计》第8周学习总结

    学号 20175201张驰 <Java程序设计>第8周学习总结 教材学习内容总结 第十五章 知识总结: 1.泛型类声明:可以使用"class 名称"声明一个类,例如:c ...

  10. ThinkPHP安全规范指引

    流年 发布于 ThinkPHP官方博客: https://blog.thinkphp.cn/789333 本文主要和大家探讨一下ThinkPHP的安全注意事项,可以作为ThinkPHP建议的安全规范实 ...