Remmarguts' Date
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 30772   Accepted: 8397

Description

"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story.

"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."

"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"

Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!

DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.

The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14

边可以重复走,
不严格的k短路
A*
估价函数为dis(起点,i)+dis(i,终点) 1、反向图上求出终点到每个点的最短路
2、起点入优先队列,
  队首出队,
  如果队首是终点,而且是第k次出队,
那么当前距离就是k短路
如果队首不是终点,便利与当前点连接的所有的点,入队 细节1:优先队列出入队不用vis数组判重,因为边可以重复走
细节2:如果第1步中,起点与终点不连通,输出-1结束,
    否则进入A*,没有vis数组,出现环会死循环
细节3:如果起点=终点,令k++,因为起点会立即出队
#include<queue>
#include<cstdio>
#include<cstring>
#define N 1001
#define M 100001
using namespace std;
int n,s,t,k;
int dis1[N];
bool vis[N];
int front[N],to[M],nxt[M],val[M],tot;
int front2[N],to2[M],nxt2[M],val2[M],tot2;
struct node
{
int num,dis;
bool operator < (node p) const
{
return dis+dis1[num]>p.dis+dis1[p.num];
}
}now,nt;
void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
to2[++tot2]=u; nxt2[tot2]=front2[v]; front2[v]=tot2; val2[tot2]=w;
}
void init()
{
int m,u,v,w;
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
scanf("%d%d%d",&s,&t,&k);
}
void spfa()
{
memset(dis1,,sizeof(dis1));
queue<int>q;
dis1[t]=;
vis[t]=true;
q.push(t);
int now;
while(!q.empty())
{
now=q.front();
q.pop();
vis[now]=false;
for(int i=front2[now];i;i=nxt2[i])
if(dis1[to2[i]]>dis1[now]+val2[i])
{
dis1[to2[i]]=dis1[now]+val2[i];
if(!vis[to2[i]])
{
q.push(to2[i]);
vis[to2[i]]=true;
}
}
}
}
void Astar()
{
if(dis1[s]>1e9)
{
printf("-1");
return;
}
if(s==t) k++;
int cnt=,last=-;
priority_queue<node>q;
now.num=s;
now.dis=;
q.push(now);
while(!q.empty())
{
now=q.top();
q.pop();
if(now.num==t)
{
cnt++;
if(cnt==k)
{
printf("%d",now.dis);
return;
}
}
for(int i=front[now.num];i;i=nxt[i])
{
nt.num=to[i];
nt.dis=now.dis+val[i];
q.push(nt);
}
}
printf("-1");
}
int main()
{
init();
spfa();
Astar();
}
												

poj 2449 Remmarguts' Date (k短路模板)的更多相关文章

  1. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  2. POJ 2449 Remmarguts' Date (K短路 A*算法)

    题目链接 Description "Good man never makes girls wait or breaks an appointment!" said the mand ...

  3. POJ 2449 Remmarguts' Date --K短路

    题意就是要求第K短的路的长度(S->T). 对于K短路,朴素想法是bfs,使用优先队列从源点s进行bfs,当第K次遍历到T的时候,就是K短路的长度. 但是这种方法效率太低,会扩展出很多状态,所以 ...

  4. [poj2449]Remmarguts' Date(K短路模板题,A*算法)

    解题关键:k短路模板题,A*算法解决. #include<cstdio> #include<cstring> #include<algorithm> #includ ...

  5. K短路模板POJ 2449 Remmarguts' Date

      Time Limit: 4000MS   Memory Limit: 65536K Total Submissions:32863   Accepted: 8953 Description &qu ...

  6. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  7. POJ 2449Remmarguts' Date K短路模板 SPFA+A*

    K短路模板,A*+SPFA求K短路.A*中h的求法为在反图中做SPFA,求出到T点的最短路,极为估价函数h(这里不再是估价,而是准确值),然后跑A*,从S点开始(此时为最短路),然后把与S点能达到的点 ...

  8. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  9. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

随机推荐

  1. vue.js学习之 跨域请求代理与axios传参

    vue.js学习之 跨域请求代理与axios传参 一:跨域请求代理 1:打开config/index.js module.exports{ dev: { } } 在这里面找到proxyTable{}, ...

  2. 在线求助man page

    一.举例——输入“man date” 图1 图2 图3 二.man之概述 用于:命令的使用说明 用法:man 命令 man page:执行“man 命令”后,出现的屏幕界面 补:man是manual( ...

  3. C语言实验——时间间隔

    Description 从键盘输入两个时间点(24小时制),输出两个时间点之间的时间间隔,时间间隔用“小时:分钟:秒”表示. 如:3点5分25秒应表示为--03:05:25.假设两个时间在同一天内,时 ...

  4. Thunder团队第六周 - Scrum会议4

    Scrum会议4 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 苗威同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblogs ...

  5. 3dContactPointAnnotationTool开发日志(二一)

      今天完成了修改按钮颜色,添加smpl模型到工具,以及可以显示物体子物体对应选项卡的功能.把之前的meshRenderer+meshFilter都改成了skinnedMeshRenderer,因为s ...

  6. Thinkphp5获取数据库数据到视图

    这是学习thinkhp5的基础篇笔记. 本文主要讲怎么配置数据库链接,以及查询数据库数据,并且最后将数据赋给视图. 数据库配置: thinkphp5的数据库配置默认在conf下的database.ph ...

  7. 【ASP.NET Core】- 搭建MVC框架

    1.使用最新版本的VS2017,并安装.NET Core2.0中相关开发工具   2.打开VS2017,点击文件-新建-项目,选择.NET Core中的ASP.NET Core Web 应用程序   ...

  8. 《Effective C#》快速笔记(三)- 使用 C# 表达设计

    目录 二十一.限制类型的可见性 二十二.通过定义并实现接口替代继承 二十三.理解接口方法和虚方法的区别 二十四.用委托实现回调 二十五.用事件模式实现通知 二十六.避免返回对内部类对象的引用 二十七. ...

  9. python 爬虫每天定时启动爬虫任务

     # coding=utf-8 import datetime import time def doSth(): # 这里是执行爬虫的main程序     print '爬虫要开始运转了....'   ...

  10. PHP中Session和Cookie的探究

    一.Session (1)Session的由来以及介绍 Session:在计算机中,尤其是在网络应用中,称为“会话控制”,生存时间为用户在浏览某个网站时,从进入网站到关闭这个网站所经过的这段时间,也就 ...