A school bought the first computer some time ago(so this computer’s id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information.

Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.

Input

Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.

Output

For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).

Sample Input

5

1 1

2 1

3 1

1 1

Sample Output

3

2

3

4

4

题意:

给出一棵树,求离每个节点最远的点的距离

思路:

把无根树转化成有根树分析。

对于上面那棵树,要求距结点2的最长距离,那么,就需要知道以2为顶点的子树(蓝色圈起的部分,我们叫它Tree(2)),距顶点2的最远距离L1

还有知道2的父节点1为根节点的树Tree(1)-Tree(2)部分(即红色圈起部分),距离结点1的最长距离+dist(1,2) = L2,那么最终距离结点2最远的距离就是max{L1,L2}

f[i][0],表示顶点为i的子树的,距顶点i的最长距离

f[i][1],表示Tree(i的父节点)-Tree(i)的最长距离+i跟i的父节点距离

要求所有的f[i][0]很简单,只要先做一次dfs求每个结点到叶子结点的最长距离即可。

然后要求f[i][1], 可以从父节点递推到子节点,

假设节点u有n个子节点,分别是v1,v2…vn

那么

如果vi不是u最长距离经过的节点,f[vi][1] = dist(vi,u)+max(f[u][0], f[u][1])

如果vi是u最长距离经过的节点,那么不能选择f[u][0],因为这保存的就是最长距离,要选择Tree(u)第二大距离secondDist,

可得f[vi][1] = dist(vi, u) + max(secondDist, f[u][1])

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; const int MAXN = 10010; struct Node{
int v, w;
}; vector<Node>adj[MAXN]; int indeg[MAXN];
int val[MAXN];
int n, m;
int64 f[MAXN][2];
int vis[MAXN]; int64 dfs1(int u){
vis[u] = true;
f[u][0] = 0;
for(int i=0; i<adj[u].size(); ++i){
int v = adj[u][i].v;
int w = adj[u][i].w;
if(vis[v]) continue;
f[u][0] = max(f[u][0], dfs1(v)+w);
}
return f[u][0];
} void dfs2(int u, int fa_w){
vis[u] = true; int max1=0, v1, max2=0, v2; for(int i=0; i<adj[u].size(); ++i){
int v = adj[u][i].v;
int w = adj[u][i].w;
if(vis[v]) continue;
int tmp = f[v][0] + w;
if(tmp > max1){
max2 = max1; v2 = v1;
max1 = tmp; v1 = v;
}else if(tmp == max1 || tmp>max2){
max2 = tmp;
v2 = v;
}
} if(u != 1){
int tmp = f[u][1];
int v = -1;
if(tmp > max1){
max2 = max1; v2 = v1;
max1 = tmp; v1 = v;
}else if(tmp == max1 || tmp>max2){
max2 = tmp;
v2 = v;
}
} for(int i=0; i<adj[u].size(); ++i){
int v = adj[u][i].v;
int w = adj[u][i].w;
if(vis[v]) continue;
if(v==v1){
f[v][1] = max2 + w;
}else{
f[v][1] = max1 + w;
}
dfs2(v, w);
}
} int main(){ while(~scanf("%d", &n) && n){ for(int i=1; i<=n; ++i) adj[i].clear(); for(int u=2; u<=n; ++u){
int v, w;
scanf("%d%d", &v, &w);
adj[u].push_back((Node){v, w});
adj[v].push_back((Node){u, w});
} memset(f, 0, sizeof(f)); memset(vis, 0, sizeof(vis));
dfs1(1); memset(vis, 0, sizeof(vis));
dfs2(1, 0); for(int i=1; i<=n; ++i){
cout << max(f[i][0], f[i][1]) << endl;
}
} return 0;
} #include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; typedef long long ll;
const int maxn=6005;
const int INF=0x3f3f3f3f; const int N = 1e4 + 5; int top;
int head[N]; struct Edge
{
int v,w,next;
} E[N]; void init()
{
memset(head,-1,sizeof(head));
top = 0;
} void add_edge(int u,int v,int w)
{
E[top].v = v;
E[top].w = w;
E[top].next = head[u];
head[u] = top++;
} int dp[N][3]; void dfs1(int u)
{
int biggest = 0, bigger = 0;
for(int i=head[u]; i!=-1; i=E[i].next)
{
int v = E[i].v;
dfs1(v);
int tmp = dp[v][0]+E[i].w;
if(biggest <= tmp)
{
bigger = biggest;
biggest = tmp;
}
else if(bigger < tmp)
bigger = tmp;
}
dp[u][0] = biggest;
dp[u][1] = bigger;
} void dfs2(int u)
{
for(int i=head[u]; i!=-1; i=E[i].next)
{
int v = E[i].v;
dp[v][2] = max(dp[u][2], dp[v][0]+E[i].w==dp[u][0] ? dp[u][1] : dp[u][0]) + E[i].w;
dfs2(v);
}
} int main()
{
int n;
while(~scanf("%d",&n))
{
init();
for(int v=2; v<=n; v++)
{
int u,w;
scanf("%d%d",&u,&w);
add_edge(u,v,w);
}
dfs1(1);
dp[1][2] = 0;
dfs2(1);
for(int i=1; i<=n; i++)
printf("%d\n",max(dp[i][0],dp[i][2]));
}
return 0;
}

hdu 2196(Computer 树形dp)的更多相关文章

  1. HDU 2196.Computer 树形dp 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. HDU 2196 Computer 树形DP经典题

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=2196 题意:每一个电脑都用线连接到了还有一台电脑,连接用的线有一定的长度,最后把全部电脑连成了一棵树,问 ...

  3. HDU 2196 Computer 树形DP 经典题

    给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权, ...

  4. hdu 2196 Computer(树形DP)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. hdu 2196 Computer 树形dp模板题

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  6. hdu 2196 Computer(树形DP经典)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. HDU 2196 Computer (树dp)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2196 给你n个点,n-1条边,然后给你每条边的权值.输出每个点能对应其他点的最远距离是多少 ...

  8. HDU - 2196(树形DP)

    题目: A school bought the first computer some time ago(so this computer's id is 1). During the recent ...

  9. hdu 2196【树形dp】

    http://acm.hdu.edu.cn/showproblem.php?pid=2196 题意:找出树中每个节点到其它点的最远距离. 题解: 首先这是一棵树,对于节点v来说,它到达其它点的最远距离 ...

  10. HDU 2196 Compute --树形dp

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. bzoj1862/1056: [Zjoi2006]GameZ游戏排名系统

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1862 http://www.lydsy.com/JudgeOnline/problem.ph ...

  2. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 【51NOD-0】1018 排序

    [算法]排序 #include<cstdio> #include<algorithm> using namespace std; ]; int main() { scanf(& ...

  4. 继承自UITableView的类自带tableView属性,不需要在创建该属性,因为父类UITableView已经创建.

      继承自UITableView的类自带tableView属性,不需要在创建该属性,因为父类UITableView已经创建.   https://www.evernote.com/shard/s227 ...

  5. NSObject class和NSObject protocol的关系(抽象基类与协议)

    [转载请注明出处] 1.接口的实现 对于接口这一概念的支持,不同语言的实现形式不同.Java中,由于不支持多重继承,因此提供了一个Interface关键词.而在C++中,通常是通过定义抽象基类的方式来 ...

  6. HDU 1422 重温世界杯 (dp)

    题目链接 Problem Description 世界杯结束了,意大利人连本带利的收回了法国人6年前欠他们的债,捧起了大力神杯,成就了4星意大利. 世界杯虽然结束了,但是这界世界杯给我们还是留下许多值 ...

  7. bzoj 2321 数学

    首先我们假设两个点(i,j),(i,k)向中间移动一格,且k>j+1,那么我们可以获得的价值为k-j,这样,我们定义每个点的每个星的能量为a[(i,j)]=i*i+j*j,这样这两个点开始的能量 ...

  8. 安装Vue.js devtools

    1.下载安装 https://github.com/vuejs/vue-devtools#vue-devtools 通过以上地址下载安装包,解压以后进入文件,按住shift,点击鼠标右键打开命令窗口 ...

  9. Lucene7.2.1系列(一)快速入门

    系列文章: Lucene系列(一)快速入门 Lucene系列(二)luke使用及索引文档的基本操作 Lucene系列(三)查询及高亮 Lucene是什么? Lucene在维基百科的定义 Lucene是 ...

  10. node启动服务

    npm install http-server -g http-server ipconfig查看当前ip 手机可访问第一个网址.