~~~题面~~~

题解:

很久以前就想写了,一直没敢做,,,不过今天写完没怎么调就过了还是很开心的。

首先我们观察到跑步的人数是很多的,要一条一条的遍历显然是无法承受的,因此我们要考虑更加优美的方法。

首先我们假设观察者没有时间的限制,一天到晚都在观察。那么我们可以想到一个很显然的做法——差分。这样就可以很方便的求出一个点被经过了多少次。

貌似这样再加想一下就可以直接用树链剖分+差分搞了。

但是还有更好的算法,是O(n)的。

而且还是比较好写的。

首先我们观察可以被统计到的点要符合一个什么条件。

设点j上的观察者在w[j]的时候观察,那么也就是说从s出发,要刚好经过w[j]到达点j,才可以被点j上的观察者统计到。

由此我们可以列出两个式子:

1,当s在j的子树内,而t在j的上方时。

  $w[j] + dep[j] = dep[s_i]$

2,当t在j的子树内,而s在j的上方时

  $dis[i] - (dep[t_i] - dep[j]) = w[j]$ 其中dis[i]表示s ---> t的路程长度

  因为dis[i] - (dep[t_i] - dep[j])其实就是s ---> j的路径长,所以这个式子就显然成立了。

  如果我们将带i的放在左边,带j的放在右边,那么将会有

  $dis[i] - dep[t_i] = w[j] - dep[j]$

那s和t都在j的子树内怎么办?(都在上方显然不会统计到)

  现在这时如果我们还是套用上面的式子,那么会有两种情况

  (1),j是(s,t)的LCA,那么此时两个式子一旦其中之一被满足,另外一个就一定会被满足(因为两个式子的实质是一样的),那么s和t将分别对j产生一次贡献(否则没有贡献)

  (2),j不是(s,t)的LCA,那么此时两个式子可能会被满足,s和t不一定会对j产生贡献。但是这种情况下,不论式子是否被满足,s和t都是不应该对j产生贡献的。
  那么我们怎么避免这种情况?

    首先我们注意到一旦这种情况出现,LCA[s,t]将会是s和t最后一次可能产生贡献的地方,因此我们要在LCA[s,t]处,消除s和t的影响,使得s和t无法对上面的点产生贡献。

那么我们应该如何统计呢?

  注意到所有的式子都可以被表示为左边只有关于i的,右边只有关于j的情况,因此我们完全可以将式子的左边和右边单独计算。即分别用两个桶统计关于两个式子的满足情况。

比如说我们定义int bu[600100];  然后每次遇到一个$s_i$的时候,我们就令$dep[s_i]++$。然后我们在每进入一个点时,都记录一个tmp = bu[w[j] + dep[j]],那么桶内对应位置元素的个数就代表满足

$dep[s_i] = t$(t为桶中位置)的元素个数。因此我们访问bu[w[j] + dep[j]]就可以获取满足 $w[j] + dep[j] = dep[s_i]$ 的元素个数,而之所以要在进入之前先记录一下位置,则是为了准确获取子树内的贡献,保证不被之前的东西干扰。

  对第二个式子的处理方式也是类似的,只不过因为第二个式子中出现了减号,而且减号旁边大小关系不确定,因此我们需要的桶中位置可能为负,所以我们统一加上一个较大的数,将本来要占据负数的数组整体向后移位就可以了。

具体实现看代码。

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 501000
#define ac 910000//要开这么大。。。
#define getchar() *o++
char READ[], *o = READ;
int n, m;
int w[AC], ans[AC], s[AC], t[AC], dis[AC], dep[AC], may[ac], id[ac];
int Head[AC], Next[ac], date[ac], tot;
struct edge{
int Head[AC], Next[ac], date[ac], tot;
inline void add(int f, int w)
{
date[++tot] = w, Next[tot] = Head[f], Head[f] = tot;
date[++tot] = f, Next[tot] = Head[w], Head[w] = tot;
}
}E1,E2,E3;//询问的边(LCA),查询的边(ans) inline int read()
{
int x = ; char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void add(int f, int w)
{
date[++tot] = w, Next[tot] = Head[f], Head[f] = tot;
date[++tot] = f, Next[tot] = Head[w], Head[w] = tot;
} inline void add1(int f, int w, int S)
{
E3.date[++tot] = w, E3.Next[tot] = E3.Head[f], E3.Head[f] = tot, may[tot] = S;
} inline void add2(int f, int w)//这里只能连单向边
{
E2.date[++tot] = w, E2.Next[tot] = E2.Head[f], E2.Head[f] = tot;
} void pre()
{
int a, b;
n = read(), m = read();
for(R i = ; i < n; i++)
{
a = read(), b = read();
add(a, b);
}
for(R i = ; i <= n; i++) w[i] = read();
E1.tot = E2.tot = tot = ;
for(R i = ; i <= m; i++)
{
s[i] = read(), t[i] = read();
E1.add(s[i], t[i]);
add1(s[i], i, );//标记为开始节点
add1(t[i], i, );//标记为结束节点
id[E1.tot - ] = id[E1.tot] = i;
}
} struct get_LCA{
int father[AC], LCA[ac]; bool z[AC]; inline int find(int x)
{
return (x == father[x]) ? x : father[x] = find(father[x]);
} void dfs(int x)
{
int now;
z[x] = true;
for(R i = Head[x]; i; i = Next[i])
{
now = date[i];
if(z[now]) continue;
dep[now] = dep[x] + ;
dfs(now);
father[now] = x;//访问完就要改父亲了
}
for(R i = E1.Head[x]; i; i = E1.Next[i])
{
now = E1.date[i];
if(z[now] && !LCA[i ^ ])
{
// printf("%d %d\n", x, now);
LCA[i] = find(now);
dis[id[i]] = dep[x] - dep[LCA[i]] + dep[now] - dep[LCA[i]];
add2(LCA[i], id[i]);//将LCA和询问联系起来
}
}
} void getLCA()
{
for(R i = ; i <= n; i++) father[i] = i;
dep[] = ;
dfs();
}
}LCA; #define k 600000
struct difference{
int bu[ac], b[ac * ];
void dfs(int x, int fa)
{
int tmp = bu[dep[x] + w[x]], rnt = b[w[x] - dep[x] + k], now;
for(R i = E3.Head[x]; i; i = E3.Next[i])//加上当前节点的贡献
{
now = E3.date[i];
if(!may[i]) ++bu[dep[x]];//如果是开始节点
else ++b[dis[now] - dep[x] + k];//等式两边同时+k
}
for(R i = Head[x]; i; i = Next[i])//遍历子树
{
now = date[i];
if(now == fa) continue;
dfs(now, x);
}
ans[x] = bu[dep[x] + w[x]] - tmp + b[w[x] - dep[x] + k] - rnt;
for(R i = E2.Head[x]; i; i = E2.Next[i])//查看当前节点是哪些点对的LCA
{
now = E2.date[i];
if(dep[s[now]] == dep[x] + w[x]) --ans[x];//如果造成了贡献,那么必定是双倍,因此要减去
--bu[dep[s[now]]];//减去贡献
--b[dis[now] - dep[t[now]] + k];//等式两边同时+k!
}
} }get; void work()
{
for(R i = ; i <= n; i++) printf("%d ", ans[i]);
printf("\n");
} int main()
{
freopen("in.in", "r", stdin);
fread(READ, , , stdin);
pre();
LCA.getLCA();
get.dfs(, );
work();
fclose(stdin);
return ;
}

[NOIP2016] 天天爱跑步 桶 + DFS的更多相关文章

  1. [Noip2016]天天爱跑步 LCA+DFS

    [Noip2016]天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...

  2. luogu1600 [NOIp2016]天天爱跑步 (tarjanLca+dfs)

    经过部分分的提示,我们可以把一条路径切成s到lca 和lca到t的链 这样就分为向上的链和向下的链,我们分开考虑: 向上:如果某一个链i可以对点x产生贡献,那么有deep[x]+w[x]=deep[S ...

  3. [NOIp2016]天天爱跑步 线段树合并

    [NOIp2016]天天爱跑步 LG传送门 作为一道被毒瘤出题人们玩坏了的NOIp经典题,我们先不看毒瘤的"动态爱跑步"和"天天爱仙人掌",回归一下本来的味道. ...

  4. 【LG1600】[NOIP2016]天天爱跑步

    [LG1600][NOIP2016]天天爱跑步 题面 洛谷 题解 考虑一条路径\(S\rightarrow T\)是如何给一个观测点\(x\)造成贡献的, 一种是从\(x\)的子树内出来,另外一种是从 ...

  5. NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...

  6. NOIP2016 天天爱跑步 线段树合并_桶_思维题

    竟然独自想出来了,好开心 Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...

  7. NOIP2016 天天爱跑步(线段树/桶)

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.天天爱跑步是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 N个结点 ...

  8. noip2016天天爱跑步

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 个结点 ...

  9. P1600 天天爱跑步[桶+LCA+树上差分]

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵 ...

随机推荐

  1. SpringBoot学习:整合shiro(验证码功能和登录次数限制功能)

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)验证码 首先login.jsp里增加了获取验证码图片的标签: <body s ...

  2. 问题集 - console.log在IE下不可用

    js中添加如下一段代码即可. if(!window.console){ window.console = {}; } if(!window.console.log){ window.console.l ...

  3. What is the reason that a likelihood function is not a pdf?

    From: http://stats.stackexchange.com/questions/31238/what-is-the-reason-that-a-likelihood-function-i ...

  4. Ubuntu Server 下将HTML页面转换为PNG图片

    零.前言 最近做一个网站,需要将网页转换为图片.由于服务器是Ubuntu Server,没有图形界面,所以实现的过程中遇到了很多问题.记录下来备用. 一.安装CutyCapt CutyCapt是一个可 ...

  5. 成员变量:对象vs指针

    一旦类初始化,那么对象必然会被创建,指针则可以在需要时候再去初始化所指向.

  6. Java开发工程师(Web方向) - 02.Servlet技术 - 第2章.Cookie与Session

    第2章--Cookie与Session Cookie与Session 浏览器输入地址--HTTP请求--Servlet--HTTP响应--浏览器接收 会话(session):打开浏览器,打开一系列页面 ...

  7. Python3 下安装python-votesmart

    在python2下安装python-smart还比较容易,而python3中由于很多函数库的变化直接使用python setup.py install 命令来安装的话会导致错误,而导致错误的原因就是p ...

  8. 今日头条 2018 AI Camp 5 月 26 日在线笔试编程题第一道——最佳路径

    题目 给定一个 n*m 的矩阵 A ,矩阵中每一个元素为一个十六进制数.寻找一条从左上角都右下角的路径,每次只能向右或者向下移动, 使得路径上所有数字之积在 16 进制下的后缀 0 最少. 输入描述: ...

  9. 关于C#中如何使用wmi获得操作系统信息?

    最近项目中用到了windows server 2012操作系统中的存储池和ISCSI Disk的技术.前期,我们整个操作都是用power shell脚本去实现了.带来了不方便,后期要使用wmi API ...

  10. Thunder团队第六周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:邹双黛 工作照片: 邹双黛同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblog ...