题面

传送门

思路

其实就是很明显的平面图模型。

不咕咕咕的平面图学习笔记

用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁

建立网络流图:

源点连接至每一个对偶图点,权值为这个区域的光明能量

每一个对偶图点连接至汇点,权值为这个区域的黑暗能量

对于每一条原图中的边,在它两侧的对偶图点之间连一条双向边,权值为这个边的代价

用所有点的光明能量和黑暗能量之和,减去最小割,得到的就是答案

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<cmath>
#include<map>
#include<vector>
#include<queue>
#define next DEEP_DARK_FANTASY
#define mp make_pair
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,m,T,x[100010],y[100010],light[100010],dark[100010],cnt;
vector<pair<int,int> >e[100010];
vector<pair<long double,int> >ee;
map<int,int>suf[100010],col[100010];
int suml[100010],sumd[100010];
namespace g{//当前弧dinic
int first[100010],cnte=-1;
struct edge{
int to,next,w;
}a[1000010];
inline void init(){memset(first,-1,sizeof(first));}
inline void add(int u,int v,int w1,int w2){
a[++cnte]=(edge){v,first[u],w1};first[u]=cnte;
a[++cnte]=(edge){u,first[v],w2};first[v]=cnte;
}
int dep[100010],cur[100010];queue<int>q;
inline bool bfs(int s,int t){
int i,u,v;
for(i=s;i<=t;i++) dep[i]=-1,cur[i]=first[i];
dep[s]=0;q.push(s);
while(!q.empty()){
u=q.front();q.pop();
for(i=first[u];~i;i=a[i].next){
v=a[i].to;if(~dep[v]||!a[i].w) continue;
dep[v]=dep[u]+1;q.push(v);
}
}
return ~dep[t];
}
inline int dfs(int u,int t,int lim){
if(u==t||!lim) return lim;
int i,v,f,flow=0;
for(i=cur[u];~i;i=a[i].next){
v=a[i].to;cur[u]=i;
if(dep[v]==dep[u]+1&&(f=dfs(v,t,min(a[i].w,lim)))){
a[i].w-=f;a[i^1].w+=f;
flow+=f;lim-=f;
if(!lim) return flow;
}
}
return flow;
}
inline int dinic(int s,int t){
int re=0;
while(bfs(s,t)) re+=dfs(s,t,1e9);
return re;
}
}
int main(){
T=read();n=read();m=read();int i,j,t1,t2,t3,tot,pos,from,next;
for(i=1;i<=n;i++){
x[i]=read();y[i]=read();
light[i]=read();dark[i]=read();
}
for(i=1;i<=m;i++){
t1=read();t2=read();t3=read();
e[t1].push_back(mp(t2,t3));
e[t2].push_back(mp(t1,t3));
}
for(i=1;i<=n;i++){
tot=e[i].size();ee.clear();
for(j=0;j<tot;j++){
ee.push_back(mp(atan2(y[e[i][j].first]-y[i],x[e[i][j].first]-x[i]),e[i][j].first));
}
sort(ee.begin(),ee.end());
for(j=0;j<tot-1;j++){//最左转线预处理:标记每一个点的后继
suf[i][ee[j].second]=ee[j+1].second;
}
if(tot) suf[i][ee[tot-1].second]=ee[0].second;
}
for(i=1;i<=n;i++){
for(j=0;j<e[i].size();j++){
pos=e[i][j].first;from=i;
if(col[i][pos]) continue;
cnt++;
col[i][pos]=cnt;
suml[cnt]+=light[pos];
sumd[cnt]+=dark[pos];
while(1){//求出一个区域
next=suf[pos][from];
if(col[pos][next]) break;
from=pos;pos=next;
col[from][pos]=cnt;
suml[cnt]+=light[pos];
sumd[cnt]+=dark[pos];
}
}
}
g::init();int ans=0;
for(i=1;i<=cnt;i++){
g::add(0,i,suml[i],0);
g::add(i,n<<1,sumd[i],0);
ans+=suml[i];ans+=sumd[i];
}
for(i=1;i<=n;i++){
for(j=0;j<e[i].size();j++){
t1=col[i][e[i][j].first];
t2=col[e[i][j].first][i];
if(i<e[i][j].first) g::add(t1,t2,e[i][j].second,e[i][j].second);
}
}
cout<<ans-g::dinic(0,n<<1)<<'\n';
}

[NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]的更多相关文章

  1. [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]

    题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...

  2. NOI.AC省选模拟赛第一场 T1 (树上高斯消元)

    link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...

  3. [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]

    题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...

  4. [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]

    题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...

  5. [NOI.AC省选模拟赛3.23] 集合 [数学]

    题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...

  6. [noi.ac省选模拟赛]第12场题解集合

    题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...

  7. [noi.ac省选模拟赛]第10场题解集合

    题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...

  8. [noi.ac省选模拟赛]第11场题解集合

    题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...

  9. [noi.ac省选模拟赛20200606]赌怪

    题目   点这里看题目. 分析   先特判掉\(K=2\)的情况.   首先可以考虑到一个简单 DP :   \(f(i)\):前\(i\)张牌的最大贡献.   转移可以\(O(n^2)\)地枚举区间 ...

随机推荐

  1. 使用QUIC

    QUIC是Google新开发的一个基于UDP的协议,它提供了像TCP一样的传输可靠性保证,可以实现数据传输的0-RTT延迟,灵活的设计使我们可以对它的拥塞控制及流量控制做更多的定制,它还提供了传输的安 ...

  2. spark 相关

    Spark为什么会比mapreduce快? 1.Spark减少了中间过程的磁盘读写,数据很多时候不需要落地,从而提升了效率. 2.Spark基于内存的读写,减少了磁盘IO.node数据交互的通信时间. ...

  3. PLSQL-包函数存储过程

    包: 包是PLSQL中多个单元的逻辑组合,他将过程组合在一个包内容,以供用户调用,使用后,不需要程序员频繁的修改程序,可以保持程序的逻辑完整性,对包中的过程重新定义或者编译,以便修改部分功能,从而更好 ...

  4. 转:vue生命周期流程图

  5. leetcode合并区间

    合并区间     给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: ...

  6. 图像质量评价指标之 PSNR 和 SSIM

    1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 给定一个大小为 \(m×n\) 的干净图像 \(I\) 和噪声图像 \(K\),均方误差 \((MSE)\) 定义 ...

  7. Cassandra 类型转换限制

    原文地址:http://stackoverflow.com/questions/31880381/cassandra-alter-column-type-which-types-are-compati ...

  8. "Hello world!"团队第一次会议

    今天是我们"Hello world!"团队第一次召开会议,今天的会议可能没有那么正式,但是我们一起确立了选题——基于WEB的售票系统.博客内容是: 1.会议时间 2.会议成员 3. ...

  9. Ubuntu 配置 ftp freemind adb

    . 1. 配置apt-get源 配置过程 : sudo vim /etc/profile 命令, 在后面添加下面的内容; 刷新配置文件 : source /etc/profie 命令; 刷新源 : s ...

  10. 算法与数据结构实验题 4.2 小 F 打怪

    ★实验任务 小 F 很爱打怪,今天因为系统 bug,他提前得知了 n 只怪的出现顺序以及击 倒每只怪得到的成就值 ai.设第一只怪出现的时间为第 1 秒,这个游戏每过 1 秒 钟出现一只新怪且没被击倒 ...