http://www.lydsy.com/JudgeOnline/problem.php?id=4034

https://www.luogu.org/problemnew/show/P3178

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

树剖板子。不会写树链剖分的请看:http://www.cnblogs.com/luyouqi233/p/7886709.html

试图默写结果被1和l搞反然后gg。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){w|=ch=='-';ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}edge[*N];
int head[N],cnt,tot,n,q;
inline void add(int u,int v){
edge[++cnt].to=v;edge[cnt].nxt=head[u];head[u]=cnt;
}
int fa[N],son[N],size[N],val[N],dep[N],idx[N],pos[N],top[N];
ll sum[*N],lazy[*N];
void dfs1(int u){
size[u]=;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa[u])continue;
fa[v]=u;dep[v]=dep[u]+;
dfs1(v);
size[u]+=size[v];
if(!son[u]||size[son[u]]<size[v])son[u]=v;
}
}
void dfs2(int u,int anc){
pos[u]=++tot;
idx[tot]=u;
top[u]=anc;
if(!son[u])return;
dfs2(son[u],anc);
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
}
void init(){
dep[]=;
dfs1();
dfs2(,);
}
void push(int a,int l,int r){
int mid=(l+r)>>;
if(lazy[a]){
lazy[a*]+=lazy[a];
lazy[a*+]+=lazy[a];
sum[a*]+=(mid-l+)*lazy[a];
sum[a*+]+=(r-mid)*lazy[a];
lazy[a]=;
}
}
void build(int a,int l,int r){
if(l==r){
sum[a]=val[idx[l]];
return;
}
int mid=(l+r)>>;
build(a*,l,mid);
build(a*+,mid+,r);
sum[a]=sum[a*]+sum[a*+];
}
ll query(int a,int l,int r,int l1,int r1){
if(r1<l||r<l1)return ;
if(l1<=l&&r<=r1)return sum[a];
int mid=(l+r)>>;
push(a,l,r);
return query(a*,l,mid,l1,r1)+query(a*+,mid+,r,l1,r1);
}
ll pathquery(int x,int y){
ll res=;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
res+=query(,,n,pos[top[x]],pos[x]);
x=fa[top[x]];
}
if(dep[x]>dep[y])swap(x,y);
res+=query(,,n,pos[x],pos[y]);
return res;
}
void modify(int a,int l,int r,int l1,int r1,ll p){
if(r1<l||r<l1)return;
if(l1<=l&&r<=r1){
sum[a]+=(r-l+)*p;
lazy[a]+=p;
return;
}
int mid=(l+r)>>;
push(a,l,r);
modify(a*,l,mid,l1,r1,p);
modify(a*+,mid+,r,l1,r1,p);
sum[a]=sum[a*]+sum[a*+];
}
int main(){
n=read(),q=read();
for(int i=;i<=n;i++)val[i]=read();
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v);add(v,u);
}
init();
build(,,n);
while(q--){
int op=read();
if(op==){
int x=read(),a=read();
modify(,,n,pos[x],pos[x],a);
}
if(op==){
int x=read(),a=read();
modify(,,n,pos[x],pos[x]+size[x]-,a);
}
if(op==){
int x=read();
printf("%lld\n",pathquery(x,));
}
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4034:[HAOI2015]树上操作——题解的更多相关文章

  1. bzoj4034: [HAOI2015]树上操作(树剖)

    4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 ...

  2. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  3. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  4. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  5. BZOJ4034: [HAOI2015]树上操作

    这题把我写吐了...代码水平还是太弱鸡了啊... 这题就是先给你一些点,以及点权.然后给你一些向边构成一颗树,树的根节点是1. 然后给定三个操作 第一个是把指定节点的权值+W 第二个是把指定节点X为根 ...

  6. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  7. [luogu3178][bzoj4034][HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  8. [bzoj4034][HAOI2015]树上操作——树状数组+dfs序

    Brief Description 您需要设计一种数据结构支持以下操作: 把某个节点 x 的点权增加 a . 把某个节点 x 为根的子树中所有点的点权都增加 a . 询问某个节点 x 到根的路径中所有 ...

  9. BZOJ4034 [HAOI2015]树上操作+DFS序+线段树

    参考:https://www.cnblogs.com/liyinggang/p/5965981.html 题意:是一个数据结构题,树上的,用dfs序,变成线性的: 思路:对于每一个节点x,记录其DFS ...

随机推荐

  1. 手机APP测试如何进行兼容性测试?

    Android App兼容性测试是一个比较重要的App评价内容,实际上兼容性测试不仅仅和测试人员相关,在开发阶段就应当着重考虑,因为兼容性问题是除了实现App本身要求的功能后,必须要关注.而且至关重要 ...

  2. 对网页进行截图(selenium)

    import os def insert_img(driver,file_name): #获取当前路径,并转换为字符串 base_dir=str(os.path.dirname(__file__)) ...

  3. Selenium 入门到精通系列:六

    Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...

  4. Selenium 入门到精通系列:一

    Selenium 入门到精通系列 PS:控制浏览器窗口大小.前进.后退.刷新 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 20 ...

  5. 为什么说session依赖cookie,以及cookie的常用知识

    session的用法 session在Flask中通常用做设置某些页面的权限,比如某些页面必须要登录才可以看到,登录的信息或标志就放到session中.它的使用过程如下: 在整个flask工程的启动文 ...

  6. TW实习日记:第19天

    今天一早上改完信息门户的代码之后,发现接口又出了问题,查了半天都不知道,原来又是网端的问题...真是心累啊,调整了一些细节样式,以及终于把企业微信的消息推送功能做完了.关键就在于有个表存放微信id的字 ...

  7. Python3实现机器学习经典算法(四)C4.5决策树

    一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...

  8. day-17 L1和L2正则化的tensorflow示例

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...

  9. Block的声明与定义语法

    Block的声明 Block的声明与函数指针的声明类似 返回值类型(^变量名)(参数列表) Block的定义 ^返回值类型(参数列表) { 表达式 } 其中: 1 如果返回值类型是void,可以省略 ...

  10. 百度编辑器ueditor的图片地址修正

    我用的百度编辑器为1.4.2的,相对于现在这个时间来说是比较新的.之前去的1.3版的,后来更新到1.4之后出现路径问题.因为今天晚上出现特别奇怪的问题,所以特地又整了一遍,发现这玩意还是得自己弄通了好 ...