39. Combination Sum

1.Problem

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]

2.Solution

题目的大意是给定一个元素不存在重复的一维数组candidates和一个目标数target,输出由一位数组中的数可以组成target的所有组合类型,注:candidates中的数可以重复使用的。

对给定的数组进行排序,然后针对target进行回溯。

3.Code

 package test;

 import java.util.ArrayList;
import java.util.Arrays;
import java.util.List; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp;
public static void main(String[] args) {
int[] a = {2,3,6,7}; new TaskTest().combinationSum(a,7);
//System.out.println();
} public List<List<Integer>> combinationSum(int[] candidates, int target) {
//[2, 3, 6, 7] and target 7
this.temp = candidates;
Arrays.sort(temp);
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
System.out.println(this.result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}

4.提交Leetcode的代码

40. Combination Sum II

1.Problem

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:

[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]

2.Soluton

Combination Sum II跟 I比不同点在于,II中的一维数组中元素允许重复,但是组成target的每个元素仅允许被使用一次

  1. backTracing(current,i + 1 ,target - temp[i]); 位置变为 i + 1
  2. 处理结果中存在的重复问题
  3. 输出的结果跟顺序无关,即([[1,1,6],[1,2,5],[1,7],[2,6]]) 和([[1,2,5],[1,1,6],[2,6],[1,7]])是相同的,都是正确的结果

3.Code

 package test;

 import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp;
public static void main(String[] args) {
int[] a = {1,1,2,5,6,7,10}; new TaskTest().combinationSum(a,8);
//System.out.println();
} public List<List<Integer>> combinationSum(int[] candidates, int target) {
//[2, 3, 6, 7] and target 7
this.temp = candidates;
Arrays.sort(temp);
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
System.out.println(this.result.toString());
Set<List<Integer>> set = new HashSet<>();
for (List<Integer> l : result ) {
if ( !set.contains(l)) {
set.add(l);
}
}
System.out.println(set.toString());
result.clear();
Iterator<List<Integer>> i = set.iterator();
while ( i.hasNext() ) {
result.add(i.next());
}
System.out.println(result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i + 1 ,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}

4.提交Leetcode的代码

216. Combination Sum III

1.Problem

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]

2.Solution

一维数组固定为{1,2,3,4,5,6,7,8,9},要求了组成target的数的个数,同样要求数字不能重复使用

3.Code

package test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp = {1,2,3,4,5,6,7,8,9};
public static void main(String[] args) {
new TaskTest().combinationSum(3,9);
//System.out.println();
} public List<List<Integer>> combinationSum(int k, int target) {
//[2, 3, 6, 7] and target 7
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
for ( int i = 0 ; i < result.size() ; i++ ) {
List<Integer> l = result.get(i); if (l.size() != k ) {
System.out.println(l.toString());
result.remove(i);
i--;
}
}
System.out.println(result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i + 1 ,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}

4.提交Leetcode的代码

377. Combination Sum IV

1.Problem

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.

2.Solution

动态规划,转移方程为:dp[n] = dp[n] + dp[n-nums[k]] (dp[0] = 1, 即n - nums[k] == 0时 ),dp[i] 代表给定的数组能组成i的种类数

3.Code

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        Arrays.sort(nums);
        DP(target , nums , dp);
        return dp[target];
    }     public void DP ( int target , int[] nums , int[] dp ) {
       for ( int i = 1 ; i <= target ; i++ ) {
            for ( int j = 0 ; j < nums.length ; j++ ) {
                if ( i - nums[j] >= 0 ) {
                    dp[i] = dp[i] + dp[ i - nums[j] ];
                } else {
                    break;
                }
            }
       }
    }
} //预先对nums进行排序然后循环中加break,leetcode 提交从18.02%提升到65.16%

4.提交Leetcode的代码


Leetcode 之 Combination Sum系列的更多相关文章

  1. [Leetcode] Combination Sum 系列

    Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...

  2. Java for LeetCode 216 Combination Sum III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  3. [array] leetcode - 40. Combination Sum II - Medium

    leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...

  4. [array] leetcode - 39. Combination Sum - Medium

    leetcode - 39. Combination Sum - Medium descrition Given a set of candidate numbers (C) (without dup ...

  5. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  6. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  7. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  8. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  9. 从Leetcode的Combination Sum系列谈起回溯法

    在LeetCode上面有一组非常经典的题型--Combination Sum,从1到4.其实就是类似于给定一个数组和一个整数,然后求数组里面哪几个数的组合相加结果为给定的整数.在这个题型系列中,1.2 ...

随机推荐

  1. java list map转换成二维数组

    /** * *@Title: ListToArray *@Description: list列表转换成二维数组 *@Author: Administrator *@Since: 2018年1月7日下午 ...

  2. spring-common.xml

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  3. 做过的自定义 View

    做过的自定义 View android view custom 音频条状图 需求 详细设计 具体实现 音频条状图 需求 音频图 最终效果类似于音频图中的条状图 只是效果模拟,并不监听真实的音频 条的宽 ...

  4. 【Selenium】之谷歌、IE、火狐浏览器各个版本的浏览器驱动下载地址

    地址:chromedriver官网下载地址: http://chromedriver.storage.googleapis.com/index.html(失效了) http://npm.taobao. ...

  5. Xcode下开发c静态库for ios CPU架构 静态库合并

    新建一个Cocoa Touch Static  Library工程 1,先在工程左侧删除“工程名Tests”下的文件与文件夹(从内往外删,最后删除"工程名Tests文件夹") :D ...

  6. GridView解决同一行item的高度不一样,如何同一行统一高度问题?

    问题描述: 有时我们使用GridView会面对类似这种情况. 这是是不是一脸愣逼,我们理想情况是把他变成这样 保证同一行的item都是一样高这样就美观许多了 注意:上面的两张图片是盗图,用来作为效果观 ...

  7. 【BZOJ】3412: [Usaco2009 Dec]Music Notes乐谱(二分)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3412 维护前缀和,然后直接二分即可... #include <cstdio> #incl ...

  8. K-Means算法Demo

    简介:本Demo是参照这个网站上的Demo自己用Java实现的.将Java打包为Jar,再将Jar转为exe,源代码及程序Demo下载请点我. K-Means算法简介 我尽量用通俗易懂但不规范的语言来 ...

  9. Linux查看网络和IO性能问题

    Linux上使用iftop可以查看网络使用情况,使用iotop可以查看磁盘io使用情况 首先需要安装iftop和iotop: yum install iftop yum install iotop = ...

  10. Domino Web中隐藏附件选择框

    只要在Web Form的最后加入以下代码,并选择Pass-Tru HTML,即可隐藏默认的附件选择框. <div id=attach Style="display:none" ...