Leetcode 之 Combination Sum系列
39. Combination Sum
1.Problem
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
2.Solution
题目的大意是给定一个元素不存在重复的一维数组candidates和一个目标数target,输出由一位数组中的数可以组成target的所有组合类型,注:candidates中的数可以重复使用的。
对给定的数组进行排序,然后针对target进行回溯。
3.Code
package test; import java.util.ArrayList;
import java.util.Arrays;
import java.util.List; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp;
public static void main(String[] args) {
int[] a = {2,3,6,7}; new TaskTest().combinationSum(a,7);
//System.out.println();
} public List<List<Integer>> combinationSum(int[] candidates, int target) {
//[2, 3, 6, 7] and target 7
this.temp = candidates;
Arrays.sort(temp);
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
System.out.println(this.result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}
4.提交Leetcode的代码

40. Combination Sum II
1.Problem
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
2.Soluton
Combination Sum II跟 I比不同点在于,II中的一维数组中元素允许重复,但是组成target的每个元素仅允许被使用一次
- backTracing(current,i + 1 ,target - temp[i]); 位置变为 i + 1
- 处理结果中存在的重复问题
- 输出的结果跟顺序无关,即([[1,1,6],[1,2,5],[1,7],[2,6]]) 和([[1,2,5],[1,1,6],[2,6],[1,7]])是相同的,都是正确的结果
3.Code
package test; import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp;
public static void main(String[] args) {
int[] a = {1,1,2,5,6,7,10}; new TaskTest().combinationSum(a,8);
//System.out.println();
} public List<List<Integer>> combinationSum(int[] candidates, int target) {
//[2, 3, 6, 7] and target 7
this.temp = candidates;
Arrays.sort(temp);
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
System.out.println(this.result.toString());
Set<List<Integer>> set = new HashSet<>();
for (List<Integer> l : result ) {
if ( !set.contains(l)) {
set.add(l);
}
}
System.out.println(set.toString());
result.clear();
Iterator<List<Integer>> i = set.iterator();
while ( i.hasNext() ) {
result.add(i.next());
}
System.out.println(result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i + 1 ,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}
4.提交Leetcode的代码

216. Combination Sum III
1.Problem
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
2.Solution
一维数组固定为{1,2,3,4,5,6,7,8,9},要求了组成target的数的个数,同样要求数字不能重复使用
3.Code
package test; import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set; public class TaskTest {
private List<List<Integer>> result = new ArrayList<List<Integer>>();
private int[] temp = {1,2,3,4,5,6,7,8,9};
public static void main(String[] args) {
new TaskTest().combinationSum(3,9);
//System.out.println();
} public List<List<Integer>> combinationSum(int k, int target) {
//[2, 3, 6, 7] and target 7
List<Integer> current = new ArrayList<>();
backTracing(current,0,target);
for ( int i = 0 ; i < result.size() ; i++ ) {
List<Integer> l = result.get(i); if (l.size() != k ) {
System.out.println(l.toString());
result.remove(i);
i--;
}
}
System.out.println(result.toString());
return result;
} public void backTracing(List<Integer> current , int index , int target) {
if ( target == 0 ) {
List<Integer> list = new ArrayList<>(current);
result.add(list);
} else {
for ( int i = index ; i < temp.length && temp[i] <= target ; i++ ) {
current.add(temp[i]);
backTracing(current,i + 1 ,target - temp[i]);
current.remove(new Integer(temp[i]));
}
}
}
}
4.提交Leetcode的代码

377. Combination Sum IV
1.Problem
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
2.Solution
动态规划,转移方程为:dp[n] = dp[n] + dp[n-nums[k]] (dp[0] = 1, 即n - nums[k] == 0时 ),dp[i] 代表给定的数组能组成i的种类数
3.Code
class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
Arrays.sort(nums);
DP(target , nums , dp);
return dp[target];
}
public void DP ( int target , int[] nums , int[] dp ) {
for ( int i = 1 ; i <= target ; i++ ) {
for ( int j = 0 ; j < nums.length ; j++ ) {
if ( i - nums[j] >= 0 ) {
dp[i] = dp[i] + dp[ i - nums[j] ];
} else {
break;
}
}
}
}
}
//预先对nums进行排序然后循环中加break,leetcode 提交从18.02%提升到65.16%
4.提交Leetcode的代码

Leetcode 之 Combination Sum系列的更多相关文章
- [Leetcode] Combination Sum 系列
Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...
- Java for LeetCode 216 Combination Sum III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [array] leetcode - 40. Combination Sum II - Medium
leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...
- [array] leetcode - 39. Combination Sum - Medium
leetcode - 39. Combination Sum - Medium descrition Given a set of candidate numbers (C) (without dup ...
- [leetcode]40. Combination Sum II组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和 II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 216. Combination Sum III 组合之和 III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 从Leetcode的Combination Sum系列谈起回溯法
在LeetCode上面有一组非常经典的题型--Combination Sum,从1到4.其实就是类似于给定一个数组和一个整数,然后求数组里面哪几个数的组合相加结果为给定的整数.在这个题型系列中,1.2 ...
随机推荐
- C预编译宏
/* ============================================================================ Name : c_test001.c A ...
- Linux(deepin)安装Oracle JDK
sudo add-apt-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracle-java8-i ...
- Google Analytics Advanced Configuration - Google Analytics 高级配置
该文档提供了Android SDK v3的部分元素的高级配置说明. Overview - 概述 Android Google Analytics SDK提供了Tracker类,应用可以用它给Googl ...
- 【Unity】Unity中资源动态载入的两种方式之AssetsBundle
首先要说的是,我们的project中有2个脚本.各自是: Build(编辑器类脚本.无需挂载到不论什么物体).可是必需要把Build脚本放到Editor目录中 Load脚本,挂载到摄像机上<pr ...
- Linux源码安装过程中选项—prefix的作用
源码的安装一般由3个步骤组成:配置(configure).编译(make).安装(make install),具体的安装方法一般作者都会给出文档,这里主要讨论配置(configure).Configu ...
- 动画切换效果之push、pop、present、dismiss
有时候页面跳转或视图切换的时候,需要做成特定的效果,常见的push.pop.present.dismiss效果如下,注意要添加代理 push默认动画效果 CATransition *transitio ...
- javascript之查找数组元素
基本思想: 比对数组中元素,相等者输出元素在数组的下标,否则就输出没找到! 代码如下: function Orderseach(array,findVal){ var temp = false; // ...
- [转]wordpress安装插件的3种方式
WordPress插件安装方法有几种?WordPress是一种使用PHP语言开发的博客平台,有些用户不知道怎么安装WordPress插件和主题的,所以今天小编就为大家介绍几种WordPress插件安装 ...
- EasyUI DataGrid 多级表头设置
使用EasyUI做一个报表统计,需要合并表头为多级表头,核心代码如下: $('#dg').datagrid({ url:'datagrid_data.action', fit : true, fitC ...
- html input size maxlength
最近做项目用到input的size和maxlength属性,以前只顾用没有用心去看看这2个标签的区别,今天周末baidu了一下,有所理解.特记录于此! <p>Name: <inp ...