洛谷题目链接:[POI2011]MET-Meteors

题意翻译

Byteotian Interstellar Union有N个成员国。现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站。 这个星球经常会下陨石雨。BIU已经预测了接下来K场陨石雨的情况。 BIU的第i个成员国希望能够收集Pi单位的陨石样本。你的任务是判断对于每个国家,它需要在第几次陨石雨之后,才能收集足够的陨石。

输入: 第一行是两个数N,M。 第二行有M个数,第i个数Oi表示第i段轨道上有第Oi个国家的太空站。 第三行有N个数,第i个数Pi表示第i个国家希望收集的陨石数量。 第四行有一个数K,表示BIU预测了接下来的K场陨石雨。 接下来K行,每行有三个数Li,Ri,Ai,表示第K场陨石雨的发生地点在从Li顺时针到Ri的区间中(如果Li<=Ri,就是Li,Li+1,…,Ri,否则就是Ri,Ri+1,…,m-1,m,1,…,Li),向区间中的每个太空站提供Ai单位的陨石样本。

输出:N行。第i行的数Wi表示第i个国家在第Wi波陨石雨之后能够收集到足够的陨石样本。如果到第K波结束后仍然收集不到,输出NIE。

数据范围:1<=n,m,k<=3*10^5 1<=Pi<=10^9 1<=Ai<10^9

感谢@noco 提供的翻译

题目描述

Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The planet is unsuitable for colonisation due to strange meteor showers, which on the other hand make it an exceptionally interesting object of study.

The member states of BIU have already placed space stations close to the planet's orbit. The stations' goal is to take samples of the rocks flying by.

The BIU Commission has partitioned the orbit into \(m\) sectors, numbered from \(1\) to \(m\), where the sectors \(1\) and \(m\) are adjacent. In each sector there is a single space station, belonging to one of the \(n\) member states.

Each state has declared a number of meteor samples it intends to gather before the mission ends. Your task is to determine, for each state, when it can stop taking samples, based on the meter shower predictions for the years to come.

给定一个环,每个节点有一个所属国家,k次事件,每次对[l,r]区间上的每个点点权加上一个值,求每个国家最早多少次操作之后所有点的点权和能达到一个值

输入输出格式

输入格式:

The first line of the standard input gives two integers, \(n\) and \(m\) (\(1\le n,m\le 300\ 000\)), separated by a single space, that denote,respectively, the number of BIU member states and the number of sectors the orbit has been partitioned into.

In the second line there are \(m\) integers \(o_i\) (\(1\le o_i\le n\)),separated by single spaces, that denote the states owning stations in successive sectors.

In the third line there are \(n\) integers \(p_i\) (\(1\le p_i\le 10^9\)),separated by single spaces, that denote the numbers of meteor samples that the successive states intend to gather.

In the fourth line there is a single integer \(k\) (\(1\le k\le 300\ 000\)) that denotes the number of meteor showers predictions. The following \(k\) lines specify the (predicted) meteor showers chronologically. The \(i\)-th of these lines holds three integers \(l_i,r_i,a_i\) (separated by single spaces), which denote that a meteor shower is expected in sectors \(l_i,l_{i+1},...,r_i\)(if \(l_i\le r_i\)) or sectors \(l_i,l_{i+1},...,m,1,...,r_i\) (if \(l_i > r_i\)) , which should provide each station in those sectors with \(a_i\) meteor samples (\(1\le a_i\le 10^9\)).

输出格式:

Your program should print \(n\) lines on the standard output.

The \(i\)-th of them should contain a single integer \(w_i\), denoting the number of shower after which the stations belonging to the \(i\)-th state are expected to gather at least \(p_i\) samples, or the word NIE (Polish for no) if that state is not expected to gather enough samples in the foreseeable future.

输入输出样例

输入样例#1:

3 5

1 3 2 1 3

10 5 7

3

4 2 4

1 3 1

3 5 2

输出样例#1:

3

NIE

1

说明

给定一个环,每个节点有一个所属国家,k次事件,每次对[l,r]区间上的每个点点权加上一个值,求每个国家最早多少次操作之后所有点的点权和能达到一个值


一句话题意: 一个长度为\(m\)的环形轨道上有\(m\)个位置,分别属于\(n\)个国家,每个国家需要收集一定的陨石,有\(k\)次流星雨,会在\([l,r]\)的区间内掉落一定的陨石(如果\(l>r\)则在\([1,r]\),\([l,m]\)的区间内掉落.问每个国家最少要多少次可以得到足够的陨石.


题解: 考虑处理一次询问,显然这个次数是具有单调性的,也就是说,次数越多,就越可能达到需要.所以可以二分这个陨石发生的次数,并且每次在改变状态的时候用树状数组区间修改,对于该国家的所有占有地区单点查询,这样一次的时间复杂度是\(O(k*log_2m+n*log_2m)\)的.

然后我们发现,每次二分出下了\(mid\)次流星雨,都可以对所有的询问作贡献,这样我们就可以用整体二分的思想,将所有询问一起处理.对于每一个国家统计当前状态下已经拥有的陨石数,直接将这个国家管辖的地区用\(vector\)保存,然后每次询问就多次单点查询来实现.虽然每个国家有多个地区,但是地区总数只有\(m\)个,也就是说这样做的复杂度只有\(O(log_2m*m*log_2k)\).

然后一个可以优化的就是,每次二分了一个\(mid\)表示已经进行了\(mid\)场流星雨,那么在修改的时候可以直接由上一次的状态修改过来(记录一个\(now\)表示当前修改到了第\(now\)场流星雨,每次进入下一层递归的时候\(now\)就是上一次的状态了.

还要注意一下在查询的时候可能爆long long,如果大于可以直接返回防止爆long long.

#include<bits/stdc++.h>
using namespace std;
const int N = 3e5+5;
typedef int _int;
#define int long long int n, m, k, id[N], c[N], vis[N], now = 0, t1[N], t2[N]; vector <int> ve[N]; struct country{
int ans, k;
}a[N]; struct Change{
int l, r, k;
}b[N]; int gi(){
int ans = 0, f = 1; char i = getchar();
while(i<'0' || i>'9'){ if(i == '-') f = -1; i = getchar(); }
while(i>='0' && i<='9') ans = ans*10+i-'0', i = getchar();
return ans * f;
} int lowbit(int x){ return x&-x; } void update(int x, int val){ for(;x<=m;x+=lowbit(x)) c[x] += val; } int query(int x){
int res = 0;
for(;x;x-=lowbit(x)) res += c[x];
return res;
} void change(Change x, int val){
if(val){
if(x.l <= x.r) update(x.l, x.k), update(x.r+1, -x.k);
else update(1, x.k), update(x.r+1, -x.k), update(x.l, x.k);
} else {
if(x.l <= x.r) update(x.l, -x.k), update(x.r+1, x.k);
else update(1, -x.k), update(x.r+1, x.k), update(x.l, -x.k);
}
} int ask(int x, int lim){
int res = 0;
for(int i=0;i<ve[x].size();i++){
res += query(ve[x][i]);
if(res > lim) return res;
}
return res;
} void solve(int l, int r, int ql, int qr){
if(ql > qr) return;
if(l == r){
for(int i=ql;i<=qr;i++) a[id[i]].ans = l;
return;
}
int mid = (l+r>>1), cnt1 = 0, cnt2 = 0, cnt = ql-1;
while(now < mid) change(b[++now], 1);
while(now > mid) change(b[now--], 0);
for(int i=ql;i<=qr;i++){
int sum = ask(id[i], a[id[i]].k);
if(sum >= a[id[i]].k) t1[++cnt1] = id[i];
else t2[++cnt2] = id[i];
}
for(int i=1;i<=cnt1;i++) id[++cnt] = t1[i];
for(int i=1;i<=cnt2;i++) id[++cnt] = t2[i];
solve(l, mid, ql, ql+cnt1-1), solve(mid+1, r, ql+cnt1, qr);
} _int main(){
int x; n = gi(), m = gi();
for(int i=1;i<=m;i++) x = gi(), ve[x].push_back(i);
for(int i=1;i<=n;i++) a[i].k = gi(), id[i] = i;
k = gi();
for(int i=1;i<=k;i++) b[i].l = gi(), b[i].r = gi(), b[i].k = gi();
b[++k].l = 1, b[k].r = m, b[k].k = 0x3f3f3f3f;
solve(1, k, 1, n);
for(int i=1;i<=n;i++){
if(a[i].ans == k) printf("NIE\n");
else printf("%lld\n", a[i].ans);
}
return 0;
}

[洛谷P3527] [POI2011]MET-Meteors的更多相关文章

  1. 洛谷 P3527 [POI2011]MET-Meteors 解题报告

    P3527 [POI2011]MET-Meteors 题意翻译 \(\tt{Byteotian \ Interstellar \ Union}\)有\(N\)个成员国.现在它发现了一颗新的星球,这颗星 ...

  2. 洛谷P3527 [POI2011]MET-Meteors [整体二分]

    题目传送门 Meteors 格式难调,题面就不妨放了. 分析: 一道整体二分的练手题. 就是一般的整体二分的套路,但是要注意,将修改和询问加入队列的时候要先加修改再加询问.另外,博主代码打得太丑,常数 ...

  3. 洛谷P3527 [POI2011]MET-Meteors(整体二分)

    传送门 整体二分 先二分一个答案,判断是否可行,把可行的全都扔到左边,不可行的扔到右边 判断是否可行用树状数组就行 具体细节看代码好了 整体二分细节真多……也可能是我大脑已经退化了? //minamo ...

  4. 洛谷P3513 [POI2011]KON-Conspiracy

    洛谷P3513 [POI2011]KON-Conspiracy 题目描述 Byteotia的领土被占领了,国王Byteasar正在打算组织秘密抵抗运动. 国王需要选一些人来进行这场运动,而这些人被分为 ...

  5. BZOJ2212或洛谷3521 [POI2011]ROT-Tree Rotations

    BZOJ原题链接 洛谷原题链接 线段树合并裸题. 因为交换子树只会对子树内部的逆序对产生影响,所以我们计算交换前的逆序对个数和交换后的个数,取\(\min\)即可. 对每个叶子节点建一棵动态开点线段树 ...

  6. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  7. 洛谷P3527 MET-Meteors [POI2011] 整体二分

    正解:整体二分 解题报告: 传送门! 还有个双倍经验!(明明是一样的题目为什么你们一个紫一个黑啊喂! 这题首先要想到可以二分嘛,然后看到多组询问肯定就整体二分鸭 那就是基本套路啊,发现是区间修改单点查 ...

  8. 洛谷 P3521 [POI2011]ROT-Tree Rotations 解题报告

    P3521 [POI2011]ROT-Tree Rotations 题意:递归给出给一棵\(n(1≤n≤200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 大体 ...

  9. 洛谷P3521 [POI2011]ROT-Tree Rotation [线段树合并]

    题目传送门 Tree Rotation 题目描述 Byteasar the gardener is growing a rare tree called Rotatus Informatikus. I ...

随机推荐

  1. Fluent Python: @property

    Fluent Python 9.6节讲到hashable Class, 为了使Vector2d类可散列,有以下条件: (1)实现__hash__方法 (2)实现__eq__方法 (3)让Vector2 ...

  2. HDU 2492 Ping pong(数学+树状数组)(2008 Asia Regional Beijing)

    Description N(3<=N<=20000) ping pong players live along a west-east street(consider the street ...

  3. java—连连看-实现封装

    1.封装 Chess.java package Linkup; /** * 棋子封装类 * * @author laixl * */ public class Chess { // 图片的 状态 // ...

  4. c++ 第五次作业(计算器第三步)

    第五次作业 (计算器第三步) 项目源文件地址:calculator 本次作业改进情况 加入多种读入选择 正常输出答案 -a 选项,输出表达式以及值 -f 选项,从指定文件读入,并把答案输出到指定文件 ...

  5. java键盘IO

    public class IO { public static void main(String[] args) throws Throwable { ScannerTest(); // testSc ...

  6. QWidget一生,从创建到销毁事件流

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QWidget一生,从创建到销毁事件流     本文地址:http://techieliang ...

  7. Jenkins系列-Jenkins构建触发器

    触发器说明 build whenever a snapshot dependency is built,当job依赖的快照版本被build时,执行本job. 触发远程构建 (例如,使用脚本):这里使用 ...

  8. Linux和Windows文件路径

    linux系统下的文件夹路径和window下的不一样,windows下就需要写成“\\photos"因为java会把第一个"\"当成转义字符给“吃了”.但在linux下就 ...

  9. 使用 Python 操作 Git 版本库 - GitPython

    GitPython 是一个用于操作 Git 版本库的 python 包, 它提供了一系列的对象模型(库 - Repo.树 - Tree.提交 - Commit等) 用于操作版本库中的相应对象. 版本库 ...

  10. React 16.x & Hooks

    React 16.x & Hooks Hooks https://reactjs.org/docs/hooks-intro.html https://reactjs.org/docs/hook ...