【NOIP】提高组2012 同余方程
【算法】扩展欧几里德算法
【题解】学完扩欧就可以随便水了。。。
转化为不定方程ax-by=1。
因为1且题目保证有解,所以方程有唯一解。
紫书曰:同余方程的一个解其实指的是一个同余等价类。
所以满足x≡x'(mod b)的其他x'也是方程的解。
题目求最小正整数解,因此ans=x%b。
#include<cstdio>
#define ll long long
void gcd(ll a,ll b,ll& g,ll& x,ll& y)
{
if(!b){g=a;x=,y=;}
else{gcd(b,a%b,g,y,x);y-=x*(a/b);}
}
int main()
{
ll A,B;
scanf("%lld %lld",&A,&B);
ll G,X,Y;
gcd(A,B,G,X,Y);
printf("%lld",(X+B)%B);
return ;
}
【NOIP】提高组2012 同余方程的更多相关文章
- luogu P1038借教室【Noip提高组2012】
这道题我读完题目的第一感觉是: 这不就是个线段树??用线段树维护区间最小值,检查是否满足订单要求即可判断. 对于修改操作直接在区间上进行. 据说会卡一卡线段树,但是貌似写一个懒标记,连zkw线段树都不 ...
- NOIP提高组2004 合并果子题解
NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...
- 计蒜客 NOIP 提高组模拟竞赛第一试 补记
计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...
- 1043 方格取数 2000 noip 提高组
1043 方格取数 2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...
- [NOIP提高组2018]货币系统
[TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...
- NOIP提高组初赛难题总结
NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...
- 津津的储蓄计划 NOIp提高组2004
这个题目当年困扰了我许久,现在来反思一下 本文为博客园ShyButHandsome的原创作品,转载请注明出处 右边有目录,方便快速浏览 题目描述 津津的零花钱一直都是自己管理.每个月的月初妈妈给津津\ ...
- 2018.12.30【NOIP提高组】模拟赛C组总结
2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...
- 2018.12.08【NOIP提高组】模拟B组总结(未完成)
2018.12.08[NOIP提高组]模拟B组总结 diyiti 保留道路 进化序列 B diyiti Description 给定n 根直的木棍,要从中选出6 根木棍,满足:能用这6 根木棍拼出一个 ...
随机推荐
- lintcode-160-寻找旋转排序数组中的最小值 II
160-寻找旋转排序数组中的最小值 II 假设一个旋转排序的数组其起始位置是未知的(比如0 1 2 4 5 6 7 可能变成是4 5 6 7 0 1 2). 你需要找到其中最小的元素. 数组中可能存在 ...
- lintcode-30-插入区间
插入区间 给出一个 无重叠 的按照区间起始端点排序的区间列表. 在列表中插入一个新的区间,你要确保列表中的区间仍然有序且 不重叠 (如果有必要的话,可以合并区间). 样例 插入区间[2, 5] 到 [ ...
- 分布式系统理论-terms
Distributed programming is the art of solving the same problem that you can solve on a single comput ...
- DEDE去掉会员登录及注册验证码的方法
1.登录打开member/index_do.php 删除245-250行,即: if(strtolower($vdcode)!=$svali || $svali=='') { ResetVdValue ...
- C运行时库
原文地址:http://blog.csdn.net/wqvbjhc/article/details/6612099 在开发window程序是经常会遇到编译好好的程序拿到另一台机器上面无法运行的情况,这 ...
- Hibernate使用详解(一)
一.前言 这些天都在为公司框架重构做准备,浏览了一下代码,挑了几个不熟或者没接触过的知识点进行攻坚,hibernate是其中之一.其实接触hibernate是在大学期间,应该是在2012年,已经201 ...
- 【bzoj3297】[USACO2011 Open]forgot STL+dp
题目描述 发生了这么多,贝茜已经忘记了她cowtube密码.然而,她记得一些有用的信息. 首先,她记得她的密码(记为变量P)长度为L(1 <= L<=1,000)字符串,并可以被分成 一个 ...
- 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp
题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...
- BZOJ5319 & 洛谷4559 & LOJ2551:[JSOI2018]军训列队——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5319 https://www.luogu.org/problemnew/show/P4559 ht ...
- BZOJ3495 PA2010 Riddle 【2-sat】
题目链接 BZOJ3495 题解 每个城市都有选和不选两种情况,很容易考虑到2-sat 边的限制就很好设置了,主要是每个郡只有一个首都的限制 我们不可能两两之间连边,这样复杂度就爆炸了 于是乎就有了一 ...