题目:http://poj.org/problem?id=3046

多重集合的背包问题。

1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ) <= k <= j)转移来。

  对于j<=c[ i ],这就是前缀和一样,所以dp[ i ][ j ] = dp[ i ][ j-1 ] + dp[ i-1 ][ j ];

  对于j>c[ i ],加了dp[ i ][ j-1 ] + dp[ i-1 ][ j ]之后会多加了一项dp[ i-1 ][ j-c[ i ]-1 ],减掉即可。

2.意义:dp[ i-1 ][ j ]表示从前面组中选 j 个,dp[ i ][ j-1 ]表示从本组+前面组中选了 j-1 个,再在本组中选1个。

  有一个不合法的情况是dp[ i ][ j-1 ]中已经选了c[ i ]个本组的,就不能再在本组中选1个了。

  而 dp[ i ][ j-1 ]中已经选了c[ i ]个本组的 的方案数就是前面组中选了 j-1-c[ i ] 个的方案数(这样选 j-1 的时候就必须选c[ i ]个本组的了)。减掉即可。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=,M=1e5+,mod=1e6;
int n,m,c[N],l,r,dp[][M],ans;
int main()
{
scanf("%d%d%d%d",&n,&m,&l,&r);int x;
for(int i=;i<=m;i++)
{
scanf("%d",&x);c[x]++;
}
dp[][]=dp[][]=;
for(int i=;i<=n;i++)
{
int u=(i&),v=!u;
for(int j=;j<=r;j++)
{
dp[u][j]=(dp[v][j]+dp[u][j-])%mod;
if(j>c[i])dp[u][j]=((dp[u][j]-dp[v][j-c[i]-])%mod+mod)%mod;
}
}
int u=(n&);
for(int j=l;j<=r;j++)(ans+=dp[u][j])%=mod;
printf("%d",ans);
return ;
}

poj 3046 Ant Counting——多重集合的背包的更多相关文章

  1. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  2. poj 3046 Ant Counting(多重集组合数)

    Ant Counting Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  3. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  4. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  5. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  6. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  7. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  8. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  9. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

随机推荐

  1. Spring_事务-注解代码

    applicationContext.xml <?xml version="1.0" encoding="UTF-8"?><beans xml ...

  2. jvm-垃圾收集器与内存分配策略

    垃圾收集器与内存分配策略 参考: https://my.oschina.net/hosee/blog/644085 http://www.cnblogs.com/zhguang/p/Java-JVM- ...

  3. Gnostice PDFtoolkit VCL的安装

    Installation and Uninstallation For New Users Close all open applications including the IDE. Run the ...

  4. hibernate 实体对象的三种状态以及转换关系。

    最新的Hibernate文档中为Hibernate对象定义了四种状态(原来是三种状态,面试的时候基本上问的也是三种状态),分别是:瞬时态(new, or transient).持久态(managed, ...

  5. 正则表达式【TLCL】

    grep[global regular expression print] print lines matching a pattern grep [options] regex [file...] ...

  6. C++ 之虚函数的实现原理

    c++的多态使用虚函数实现,通过“晚绑定”,使程序在运行的时候,根据对象的类型去执行对应的虚函数. C++ 之虚函数的实现原理 带有虚函数的类,编译器会为其额外分配一个虚函数表,里面记录的使虚函数的地 ...

  7. ASCII_02_扩展

    1.来自“http://www.360doc.com/content/10/1007/22/3775569_59187136.shtml” 2. 3. 4. 5.

  8. ThinkPad.E440_FN键反了

    1.一直不知道,为何我的 FN键反了(Fn+F1 才是F1的功能),想改过来.查到是 BIOS中改,但是 BIOS里面没有 那些个修改的选项,于是 还原了BIOS的设置,于是出问题了... 2.问题1 ...

  9. 关于VirtualBox在桥接模式下无法联网解决方案

    关于VirtualBox在桥接模式下无法联网 解决方案VirtualBox与笔记本无线网卡桥接 如果重新开机连接不上,可能需要重新共享一下,(重新给桥接网卡分配与当前物理机IP在同一局域网段的IP) ...

  10. Windows下下载及安装numpy、pandas及简单应用

    下载numpy 下载地址 https://pypi.python.org/pypi/numpy 进入网站,下载和自己电脑及电脑中安装的python匹配的numpy版本.我的电脑是Win 10 x64位 ...