BZOJ2791 Rendezvous
Description
给定一个n个顶点的有向图,每个顶点有且仅有一条出边。
对于顶点i,记它的出边为(i, a[i])。
再给出q组询问,每组询问由两个顶点a、b组成,要求输出满足下面条件的x、y:
1. 从顶点a沿着出边走x步和从顶点b沿着出边走y步后到达的顶点相同。
2. 在满足条件1的情况下max(x,y)最小。
3. 在满足条件1和2的情况下min(x,y)最小。
4. 在满足条件1、2和3的情况下x>=y。
如果不存在满足条件1的x、y,输出-1 -1。
Input
第一行两个正整数n和q (n,q<=500,000)。
第二行n个正整数a[1],a[2],...,a[n] (a[i]<=n)。
下面q行,每行两个正整数a,b (a,b<=n),表示一组询问。
Output
输出q行,每行两个整数。
思路:其实我觉得基环树题就是暴力模拟题……先找环,然后有多种情况,在环上某点的同一子树下,在环上不同子树下,不在同一联通块内,一一处理即可
#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + ; int head[N], now;
struct edges{
int to, next, w;
}edge[N<<];
void add(int u, int v, int w){ edge[++now] = {v, head[u], w}; head[u] = now;}
void read(int &x){
int f=;x=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=x*+s-'';s=getchar();}
x*=f;
} int n, q, dfn[N], sz, pre[N], tot, c[N], dict[N], bel[N], fa[N][], dep[N], pos[N];
vector<int> cir[N];
void fcur(int x){
dfn[x] = ++sz; bel[x] = tot;
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == pre[x]) continue;
if(dfn[v]){
if(dfn[v] < dfn[x]) continue;
cir[tot].push_back(x); c[x] = tot;
for(; x != v; v = pre[v]){
cir[tot].push_back(v), c[v] = tot;
}
}else pre[v] = x, fcur(v);
}
return ;
} void dfs(int x, int father, int root){
dict[x] = root; fa[x][] = father;
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == father || c[v]) continue;
dep[v] = dep[x] + ;
dfs(v, x, root);
}
}
int LCA(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
int k=dep[u]-dep[v];
for(int i=;i<=;i++)
if((<<i)&k) u=fa[u][i];
if(u==v) return u;
for(int i=;i>=;i--)
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
return fa[u][];
}
void dfs2(int x, int step){
pos[x] = step;
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(edge[i].w && !pos[v]) dfs2(v, step + );
}
}
int main(){
read(n), read(q);
int x, y;
for(int i = ; i <= n; i++){
read(x);
add(i, x, ), add(x, i, );
}
for(int i = ; i <= n; i++){
if(!dfn[i]){
sz = ; tot++;
fcur(i);
}
}
for(int i = ; i <= tot; i++){
dfs2(cir[i][], );
for(int j = ; j < cir[i].size(); j++){
x = cir[i][j];
dict[x] = x;
dfs(x, x, x);
}
}
for(int j = ; j <= ; j++)
for(int i = ; i <= n; i++)
fa[i][j + ] = fa[fa[i][j]][j];
while(q--){
scanf("%d%d", &x, &y);
if(bel[x] != bel[y]){
puts("-1 -1"); continue;
}else if(dict[x] == dict[y]){
int lca = LCA(x, y);
printf("%d %d\n", dep[x] - dep[lca], dep[y] - dep[lca]);
}else{
int rt1 = dict[x], rt2 = dict[y], siz = cir[bel[x]].size();
int s1 = dep[x] - dep[rt1], s2 = dep[y] - dep[rt2];
int k1, k2;
if(pos[rt1] < pos[rt2]) k1 = pos[rt2] - pos[rt1], k2 = siz - k1;
else k2 = pos[rt1] - pos[rt2], k1 = siz - k2;
int tmp1 = s1 + k1, tmp2 = s2 + k2;
if(max(tmp1, s2) != max(s1, tmp2)){
if(max(tmp1, s2) > max(s1, tmp2)) printf("%d %d\n", s1, tmp2);
else printf("%d %d\n", tmp1, s2);
continue;
}
else if(min(tmp1, s2) != min(s1, tmp2)){
if(min(tmp1, s2) > min(s1, tmp2)) printf("%d %d\n", s1, tmp2);
else printf("%d %d\n", tmp1, s2);
continue;
}
else{
if(tmp1 >= s2) printf("%d %d\n", tmp1, s2);
else printf("%d %d\n", s1, tmp2);
}
}
}
return ;
}
BZOJ2791 Rendezvous的更多相关文章
- 【BZOJ2791】[Poi2012]Rendezvous 倍增
[BZOJ2791][Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组 ...
- [BZOJ2791][Poi2012]Rendezvous
2791: [Poi2012]Rendezvous Time Limit: 25 Sec Memory Limit: 128 MBSubmit: 95 Solved: 71[Submit][Sta ...
- [BZOJ2791]:[Poi2012]Rendezvous(塔尖+倍增LCA)
题目传送门 题目描述 给定一个有n个顶点的有向图,每个顶点有且仅有一条出边.每次询问给出两个顶点${a}_{i}$和${b}_{i}$,求满足以下条件的${x}_{i}$和${y}_{i}$: ...
- TensorFlow中的通信机制——Rendezvous(二)gRPC传输
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传 ...
- TensorFlow中的通信机制——Rendezvous(一)本地传输
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在TensorFlow源码中我们经常能看到一个奇怪的词——Rendezvous ...
- Loadrunner集合点Rendezvous知识
摘自: http://blog.csdn.net/richnaly/article/details/7967364 集合点的意思时等到特定的用户数后再一起执行某个操作,比如一起保存,一起提交(我们通常 ...
- 【BZOJ 2791】 2791: [Poi2012]Rendezvous (环套树、树链剖分LCA)
2791: [Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组询问由两 ...
- 「POI2012」约会 Rendezvous
#2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...
- 约会Rendezvous
约会 Rendezvous 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 给定一个有 nnn 个顶点的有向图,每个顶点有且仅有一条出边.每次询问给出两个顶点 ai ...
随机推荐
- 使用unittest里面的discover()方法组织测试用例
import osimport unittest directory = os.getcwd()# 测试用例的目录organize = unittest.defaultTestLoader.disco ...
- python处理dict转json,字符串中存在空格问题,导致url编码时,存在多余字符
在进行urlencode转换请求的参数时,一直多出一个空格,导致请求参数不正确,多了一个空格,解决方法一种是将dict中key-value键值对的value直接定义为字符串,另一种是value仍然为字 ...
- (C#)代理模式
1.代理模式 为其他对象提供代理以控制对这个对象的访问. 远程代理:为一个对象在不同的地址空间提供举报代表.这样可以隐藏一个对象在不同地址空间的事实. 虚拟代理:是依据需要创建开销很大的对象.通过它来 ...
- Python常用函数--文档字符串DocStrings
Python 有一个甚是优美的功能称作python文档字符串(Documentation Strings),在称呼它时通常会使用另一个短一些的名字docstrings.DocStrings 是一款你应 ...
- vivado使用感想
寒假学了一学期vivado也没有学出什么名堂:为了调试龙芯的五级流水CPU,今天肝了一下午结果还把vivado给摸清楚了,果然是以目标为导向最能出成绩. vivado开发硬件的流程 写代码 模拟仿真s ...
- 20172330 2017-2018-1 《Java程序设计》第九周学习总结
20172330 2017-2018-1 <程序设计与数据结构>第九周学习总结 教材学习内容总结 本周的学习包括两章内容,分别为异常和递归. 异常 错误和异常都是对象,代表非正常情况或者无 ...
- lintcode-162-矩阵归零
162-矩阵归零 给定一个m×n矩阵,如果一个元素是0,则将其所在行和列全部元素变成0. 需要在原矩阵上完成操作. 样例 给出一个矩阵 [ [1, 2], [0, 3] ] 返回 [ [0, 2], ...
- Unity3d学习日记(一)
闲来无事开始自学unity3d,发现还挺容易入门的,添加资源文件以及用c#编写脚本都很方便. 前面在Unity官方教程上自学了一段时间,跟着教程写了个space_shooter的小游戏,虽然游 ...
- 解决chrome css本地映射不成功&&附带映射方法
解决办法:把本地文件夹名改成英文的(不要有中文) 顺便写一下怎么把在chrome调试的本地项目中的css映射到本地: 1.F12(option+command+i)启动chrome调试工具 2.打开s ...
- js 控制
js 制动控制 代码 是 :setInterval(function(){$(".egg").click();},1000); 使用方法:调出浏览器放控制台(console),一般 ...