AlexNet 分类 FashionMNIST
from mxnet import gluon,init,nd,autograd
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss
import mxnet as mx
import time
import os
import sys # 建立网络
net = nn.Sequential()
# 使用较大的 11 x 11 窗口来捕获物体。同时使用步幅 4 来较大减小输出高和宽。
# 这里使用的输入通道数比 LeNet 中的也要大很多。
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 减小卷积窗口,使用填充为 2 来使得输入输出高宽一致,且增大输出通道数。
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 连续三个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽。
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 这里全连接层的输出个数比 LeNet 中的大数倍。使用丢弃层来缓解过拟合。
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
# 输出层。由于这里使用 Fashion-MNIST,所以用类别数为 10,而非论文中的 1000。
nn.Dense(10)) X = nd.random.uniform(shape=(1,1,224,224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name,'output shape:\t',X.shape) # 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
'~', '.mxnet', 'datasets', 'fashion-mnist')):
root = os.path.expanduser(root) # 展开用户路径 '~'。
transformer = []
if resize:
transformer += [gdata.vision.transforms.Resize(resize)]
transformer += [gdata.vision.transforms.ToTensor()]
transformer = gdata.vision.transforms.Compose(transformer)
mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = gdata.DataLoader(
mnist_train.transform_first(transformer), batch_size, shuffle=True,
num_workers=num_workers)
test_iter = gdata.DataLoader(
mnist_test.transform_first(transformer), batch_size, shuffle=False,
num_workers=num_workers)
return train_iter, test_iter batch_size = 128
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224) def accuracy(y_hat,y):
return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter,net,ctx):
acc = nd.array([0],ctx=ctx)
for X,y in data_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx)
acc+=accuracy(net(X),y)
return acc.asscalar() / len(data_iter) # 训练模型
def train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs):
print('training on',ctx)
loss = gloss.SoftmaxCrossEntropyLoss() for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
start = time.time()
for X,y in train_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx) with autograd.record():
y_hat = net(X)
l = loss(y_hat,y) l.backward()
trainer.step(batch_size) train_l_sum += l.mean().asscalar()
train_acc_sum += evaluate_accuracy(test_iter,net,ctx)
test_acc = evaluate_accuracy(test_iter,net,ctx)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec' % (epoch+1,train_l_sum/len(train_iter),test_acc,time.time()-start)) def try_gpu():
try:
ctx = mx.gpu()
_ = nd.zeros((1,),ctx=ctx)
except mx.base.MXNetError:
ctx = mx.cpu()
return ctx lr = 0.01
num_epochs = 5
ctx = try_gpu() net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs)

AlexNet 分类 FashionMNIST的更多相关文章
- LeNet 分类 FashionMNIST
import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss ...
- gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data ...
- gluon实现softmax分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...
- PyTorch 介绍 | BUILD THE NEURAL NETWORK
神经网络由对数据进行操作的layers/modules组成.torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络.PyTorch的每一个module都继承自nn.Module. ...
- Pytorch分类和准确性评估--基于FashionMNIST数据集
最近在学习Pytorch v1.3最新版和Tensorflow2.0. 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorc ...
- 【分类】AlexNet论文总结
目录 0. 论文链接 1. 概述 2. 对数据集的处理 3. 网络模型 3.1 ReLU Nonlinearity 3.2 Training on multiple GPUs 3.3 Local Re ...
- AlexNet实现cifar10数据集分类
import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datas ...
- 从头学pytorch(十五):AlexNet
AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
随机推荐
- java代码行数统计工具类
package com.syl.demo.test; import java.io.*; /** * java代码行数统计工具类 * Created by 孙义朗 on 2017/11/17 0017 ...
- IntelliJ IDEA 快捷键(二)(window版)
一.重构 1.重构变量 修改变量名称,即重命名.快捷键 Shift + F6 ,位于 Refactor 中. 2.重构方法 可以增加变量个数.快捷键 Ctrl + F6 ,位于 Refactor 中. ...
- C#学习笔记15
1.平台互操作性和不安全的代码:C#功能强大,但有些时候,它的表现仍然有些“力不从心”,所以我们只能摒弃它所提供的所有安全性,转而退回到内存地址和指针的世界. C#通过3种方式对此提供支持. (1)第 ...
- 一台电脑上运行两个tomcat
1.建立两个文件夹,tomcat1,tomcat2,分别在里面放入tomcat7文件(非安装版) 2.改配置 tomcat1中的配置就不用改了,直接用默认配置 tomcat2中的配置要改要,改conf ...
- vue-i18n国际化实例
demo 场景需求分析 需求很简单,左上角 ''网易云音乐''就是一个中英文切换的按钮,点击弹出提示框,确认切换语言后,实现英文版本. 切换成英文版本: 三.实现国际化 1.我们得先有开发环境,先有项 ...
- ES6的新知识点
一.变量 原有变量: var的缺点: 1.可以重复声明 2.无法限制修改 3.没有块级作用域 新增变量: let :不能重复声明,变量-可以修改,块级作用域 const:不能重复声明,变量-不可以修改 ...
- eclipse Java类 红色感叹号 commit失败
解决方法: 1.进入java类文件所在物理目录 (e:\workspace\myproject\...) 2. 删除多余的版本管理工具的文件或文件夹(如 .svn) 3. 刷新eclipse工程 4 ...
- jquery 拓展函数集
方式: 通过拓展在调用$()时返回的包装器 1.将函数绑定到$.fn $.fn.disable = function(){ return this.each(function(){ if (typeo ...
- var a =10 与 a = 10的区别
学习文章------汤姆大叔-变量对象 总结笔记 变量特点: ①变量声明可以存储在变量对象中.②变量不能直接用delete删除. var a =10 与 a = 10的区别: ①a = 10只是为全局 ...
- FPGA学习系列 各种门器件程序积累
1. 两输入与(and)门 entity and2gate is Port ( x : in STD_LOGIC; y : in STD_LOGIC; z : out STD_LOGIC);end a ...