from mxnet import gluon,init,nd,autograd
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss
import mxnet as mx
import time
import os
import sys # 建立网络
net = nn.Sequential()
# 使用较大的 11 x 11 窗口来捕获物体。同时使用步幅 4 来较大减小输出高和宽。
# 这里使用的输入通道数比 LeNet 中的也要大很多。
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 减小卷积窗口,使用填充为 2 来使得输入输出高宽一致,且增大输出通道数。
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 连续三个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽。
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 这里全连接层的输出个数比 LeNet 中的大数倍。使用丢弃层来缓解过拟合。
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
# 输出层。由于这里使用 Fashion-MNIST,所以用类别数为 10,而非论文中的 1000。
nn.Dense(10)) X = nd.random.uniform(shape=(1,1,224,224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name,'output shape:\t',X.shape) # 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
'~', '.mxnet', 'datasets', 'fashion-mnist')):
root = os.path.expanduser(root) # 展开用户路径 '~'。
transformer = []
if resize:
transformer += [gdata.vision.transforms.Resize(resize)]
transformer += [gdata.vision.transforms.ToTensor()]
transformer = gdata.vision.transforms.Compose(transformer)
mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = gdata.DataLoader(
mnist_train.transform_first(transformer), batch_size, shuffle=True,
num_workers=num_workers)
test_iter = gdata.DataLoader(
mnist_test.transform_first(transformer), batch_size, shuffle=False,
num_workers=num_workers)
return train_iter, test_iter batch_size = 128
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224) def accuracy(y_hat,y):
return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter,net,ctx):
acc = nd.array([0],ctx=ctx)
for X,y in data_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx)
acc+=accuracy(net(X),y)
return acc.asscalar() / len(data_iter) # 训练模型
def train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs):
print('training on',ctx)
loss = gloss.SoftmaxCrossEntropyLoss() for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
start = time.time()
for X,y in train_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx) with autograd.record():
y_hat = net(X)
l = loss(y_hat,y) l.backward()
trainer.step(batch_size) train_l_sum += l.mean().asscalar()
train_acc_sum += evaluate_accuracy(test_iter,net,ctx)
test_acc = evaluate_accuracy(test_iter,net,ctx)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec' % (epoch+1,train_l_sum/len(train_iter),test_acc,time.time()-start)) def try_gpu():
try:
ctx = mx.gpu()
_ = nd.zeros((1,),ctx=ctx)
except mx.base.MXNetError:
ctx = mx.cpu()
return ctx lr = 0.01
num_epochs = 5
ctx = try_gpu() net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs)

AlexNet 分类 FashionMNIST的更多相关文章

  1. LeNet 分类 FashionMNIST

    import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss ...

  2. gluon 实现多层感知机MLP分类FashionMNIST

    from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data ...

  3. gluon实现softmax分类FashionMNIST

    from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...

  4. PyTorch 介绍 | BUILD THE NEURAL NETWORK

    神经网络由对数据进行操作的layers/modules组成.torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络.PyTorch的每一个module都继承自nn.Module. ...

  5. Pytorch分类和准确性评估--基于FashionMNIST数据集

    最近在学习Pytorch v1.3最新版和Tensorflow2.0. 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorc ...

  6. 【分类】AlexNet论文总结

    目录 0. 论文链接 1. 概述 2. 对数据集的处理 3. 网络模型 3.1 ReLU Nonlinearity 3.2 Training on multiple GPUs 3.3 Local Re ...

  7. AlexNet实现cifar10数据集分类

    import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datas ...

  8. 从头学pytorch(十五):AlexNet

    AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...

  9. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

随机推荐

  1. step2: 爬取廖雪峰博客

    #https://zhuanlan.zhihu.com/p/26342933 #https://zhuanlan.zhihu.com/p/26833760 scrapy startproject li ...

  2. 架构实战项目心得(十四):spring-boot结合Swagger2构建RESTful API测试体系

    一.添加依赖: <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...

  3. JqueryEasyUI $.Parser

    Parser(解析器) 对象的属性和方法: 使用: <link href="~/jquery-easyui-1.5.2/themes/bootstrap/easyui.css" ...

  4. java类与对象基础--抽象类和接口

    在java的类体系中,有两个比较特殊的抽象体--抽象类和接口.抽象体并不可以拥有具体的对象(而且接口甚至不是类),但是它们却是在java设计领域非常重要的两个概念,很多优秀的设计模式都是基于这两个概念 ...

  5. Vue中的静态资源管理(src下的assets和static文件夹的区别)

    ### 你可能注意到了我们的静态资源共有两个目录src/assets和static/,你们它们之间有怎样的区别呢? 资源打包 为了回答这个问题,我们需要了解webpack是如何处理静态资源的. 在所有 ...

  6. laravel验证码

    登录验证码 1.首先,进入https://github.com/mewebstudio/captcha,根据captcha上的使用方法一步步来实现验证码的安装,因为是laravel5.7,所以选择了c ...

  7. css3之背景属性之background-size

    一.相关属性: background-image: url(“./img/a.jpg”); //设置元素背景图片 background-repeat: repeat/no-repeat: //设置背景 ...

  8. IE6 行内定义成块元素后高度失效

    问题描述: ie6下,空标签块元素height定义失效,表现为除设置的height值外还会显示N像素额外的高度. 实际运用中,若标签为空且定义了小于14px的高度,再加入一背景图的话,会发现该元素高度 ...

  9. ActiveX界面已显示,调用方法报undefined的处理办法

    1.在ie中将当前网址加入信任网站 2.设置->internet选项->安全->受信任站点->自定义级别:将所有有关ActiveX的选项设置为启用 3.重启ie再次访问即可. ...

  10. Memcache 学习笔记(一)----Memcache — Linux部署

    Memcache 一.Memcache简介(内容摘自 --百度百科) memcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以 ...