AlexNet 分类 FashionMNIST
from mxnet import gluon,init,nd,autograd
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss
import mxnet as mx
import time
import os
import sys # 建立网络
net = nn.Sequential()
# 使用较大的 11 x 11 窗口来捕获物体。同时使用步幅 4 来较大减小输出高和宽。
# 这里使用的输入通道数比 LeNet 中的也要大很多。
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 减小卷积窗口,使用填充为 2 来使得输入输出高宽一致,且增大输出通道数。
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 连续三个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽。
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 这里全连接层的输出个数比 LeNet 中的大数倍。使用丢弃层来缓解过拟合。
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
# 输出层。由于这里使用 Fashion-MNIST,所以用类别数为 10,而非论文中的 1000。
nn.Dense(10)) X = nd.random.uniform(shape=(1,1,224,224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name,'output shape:\t',X.shape) # 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
'~', '.mxnet', 'datasets', 'fashion-mnist')):
root = os.path.expanduser(root) # 展开用户路径 '~'。
transformer = []
if resize:
transformer += [gdata.vision.transforms.Resize(resize)]
transformer += [gdata.vision.transforms.ToTensor()]
transformer = gdata.vision.transforms.Compose(transformer)
mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = gdata.DataLoader(
mnist_train.transform_first(transformer), batch_size, shuffle=True,
num_workers=num_workers)
test_iter = gdata.DataLoader(
mnist_test.transform_first(transformer), batch_size, shuffle=False,
num_workers=num_workers)
return train_iter, test_iter batch_size = 128
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224) def accuracy(y_hat,y):
return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter,net,ctx):
acc = nd.array([0],ctx=ctx)
for X,y in data_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx)
acc+=accuracy(net(X),y)
return acc.asscalar() / len(data_iter) # 训练模型
def train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs):
print('training on',ctx)
loss = gloss.SoftmaxCrossEntropyLoss() for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
start = time.time()
for X,y in train_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx) with autograd.record():
y_hat = net(X)
l = loss(y_hat,y) l.backward()
trainer.step(batch_size) train_l_sum += l.mean().asscalar()
train_acc_sum += evaluate_accuracy(test_iter,net,ctx)
test_acc = evaluate_accuracy(test_iter,net,ctx)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec' % (epoch+1,train_l_sum/len(train_iter),test_acc,time.time()-start)) def try_gpu():
try:
ctx = mx.gpu()
_ = nd.zeros((1,),ctx=ctx)
except mx.base.MXNetError:
ctx = mx.cpu()
return ctx lr = 0.01
num_epochs = 5
ctx = try_gpu() net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs)

AlexNet 分类 FashionMNIST的更多相关文章
- LeNet 分类 FashionMNIST
import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss ...
- gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data ...
- gluon实现softmax分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...
- PyTorch 介绍 | BUILD THE NEURAL NETWORK
神经网络由对数据进行操作的layers/modules组成.torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络.PyTorch的每一个module都继承自nn.Module. ...
- Pytorch分类和准确性评估--基于FashionMNIST数据集
最近在学习Pytorch v1.3最新版和Tensorflow2.0. 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorc ...
- 【分类】AlexNet论文总结
目录 0. 论文链接 1. 概述 2. 对数据集的处理 3. 网络模型 3.1 ReLU Nonlinearity 3.2 Training on multiple GPUs 3.3 Local Re ...
- AlexNet实现cifar10数据集分类
import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datas ...
- 从头学pytorch(十五):AlexNet
AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
随机推荐
- step2: 爬取廖雪峰博客
#https://zhuanlan.zhihu.com/p/26342933 #https://zhuanlan.zhihu.com/p/26833760 scrapy startproject li ...
- 架构实战项目心得(十四):spring-boot结合Swagger2构建RESTful API测试体系
一.添加依赖: <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...
- JqueryEasyUI $.Parser
Parser(解析器) 对象的属性和方法: 使用: <link href="~/jquery-easyui-1.5.2/themes/bootstrap/easyui.css" ...
- java类与对象基础--抽象类和接口
在java的类体系中,有两个比较特殊的抽象体--抽象类和接口.抽象体并不可以拥有具体的对象(而且接口甚至不是类),但是它们却是在java设计领域非常重要的两个概念,很多优秀的设计模式都是基于这两个概念 ...
- Vue中的静态资源管理(src下的assets和static文件夹的区别)
### 你可能注意到了我们的静态资源共有两个目录src/assets和static/,你们它们之间有怎样的区别呢? 资源打包 为了回答这个问题,我们需要了解webpack是如何处理静态资源的. 在所有 ...
- laravel验证码
登录验证码 1.首先,进入https://github.com/mewebstudio/captcha,根据captcha上的使用方法一步步来实现验证码的安装,因为是laravel5.7,所以选择了c ...
- css3之背景属性之background-size
一.相关属性: background-image: url(“./img/a.jpg”); //设置元素背景图片 background-repeat: repeat/no-repeat: //设置背景 ...
- IE6 行内定义成块元素后高度失效
问题描述: ie6下,空标签块元素height定义失效,表现为除设置的height值外还会显示N像素额外的高度. 实际运用中,若标签为空且定义了小于14px的高度,再加入一背景图的话,会发现该元素高度 ...
- ActiveX界面已显示,调用方法报undefined的处理办法
1.在ie中将当前网址加入信任网站 2.设置->internet选项->安全->受信任站点->自定义级别:将所有有关ActiveX的选项设置为启用 3.重启ie再次访问即可. ...
- Memcache 学习笔记(一)----Memcache — Linux部署
Memcache 一.Memcache简介(内容摘自 --百度百科) memcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以 ...