Dijkstra算法 - 最短路径算法
2017-07-26 22:30:45
writer:pprp
dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度,
选择路径长度最小的顶点加入到集合S,根据所加入顶点更新源点到其他顶点的路径长度,然后再选取最小边的顶点;
实现:用邻接矩阵
适用条件:图中任意一个边都是正的
我的理解:从某一点出发,找到与该点临近有路径的点,找到其中最短路径的点,将其标记,表示已经访问过了,
然后更新距离的数组(如果通过两步路径和要比一步的路要短),还需要在深刻理解一下;
代码如下:
#include <iostream> using namespace std; const int INF = ;
int n;
int map[][]; //储存图
int visit[] = {0}; //设置访问标记
int d[]; //源点到各节点的最小距离 void init()
{
cin >> n;
for(int i = ; i <= n ; i++)
for(int j = ; j <= n ; j++)
{
cin >> map[i][j];
if(map[i][j] == )
map[i][j] = INF;
}
} void Dijkstra(int x) //从x点开始到其他源点的距离
{
int i,j,Min,p;
for(i =; i<=n; i++)
d[i] = map[x][i]; //初始化最小距离
visit[x] = ; //标记为已访问过
d[x] = ; //自身到自身为0
for(i = ; i < n; i++)
{
Min = INF; //找最小边
for(j = ; j<=n; j++) //找出总和最短路径
{
if(!visit[j]&&Min>d[j])
{
p = j;
Min = d[j];
}
}
visit[p] = ;
for(j = ; j <= n; j++)
{
if(!visit[j]&&Min+map[p][j]<d[j])
d[j] = Min+map[p][j];
}
}
for(i = ;i <= n ;i++)
cout <<d[i]<<" ";
cout << endl;
} int main()
{
init();
Dijkstra();
return ;
}
Dijkstra算法 - 最短路径算法的更多相关文章
- (Dijkstra)迪杰斯特拉算法-最短路径算法
迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...
- Relaxation step(Dijkstra's 最短路径算法)
翻译成中文就是"松弛",属于工程优化的范畴: Dijkstra 的单源最短路径算法,有一个重要的步奏,当访问到新的结点 u (加入到集合 S),然后遍历 u 的邻接顶点(Adj), ...
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
- Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
- 最短路径算法之Dijkstra算法(java实现)
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...
随机推荐
- boost::bind 详解
使用 boost::bind是标准库函数std::bind1st和std::bind2nd的一种泛化形式.其可以支持函数对象.函数.函数指针.成员函数指针,并且绑定任意参数到某个指定值上或者将输入参数 ...
- 【bzoj4518】[Sdoi2016]征途 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...
- 爬虫入门【11】Pyspider框架入门—使用HTML和CSS选择器下载小说
开始之前 首先我们要安装好pyspider,可以参考上一篇文章. 从一个web页面抓取信息的过程包括: 1.找到页面上包含的URL信息,这个url包含我们想要的信息 2.通过HTTP来获取页面内容 3 ...
- Leetcode-Convert Sorted List to BST.
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
- angualar入门学习-- 自定义指令 指令编译执行过程
3个阶段: 一.加载阶段 加载angular.js的源码,找到ng-app确定应用边界范围. 二.编译阶段 compile 查找所有指令,保存在一个列表中 对所有指令按优先级(property属性值) ...
- vue中的项目目录assets和staitc的区别
vue中的项目目录assets和staitc的区别 在进行发行正式版时,即为npm run build编译后, assets下的文件如(js.css)都会在dist文件夹下面的项目目录分别合并到一个文 ...
- python单线程解决并发
1.单线程解决并发 方式一 import socket import select # 百度创建连接:非阻塞 client1 = socket.socket() client1.setblocking ...
- Kotlin 初级读本
第一部分——快速上手第一章·启程 第二章·基本语法第三章·Kotlin 与 Java 混编 第二部分——开始学习 Kotlin第四章·Kotlin 的类特性(上)第四章·Kotlin 的类特性(下)第 ...
- Django-form进阶+详细版
Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 一.创建Form类 #!/usr/bin/en ...
- Delphi 正则表达式之TPerlRegEx 类的属性与方法(4): Replace
Delphi 正则表达式之TPerlRegEx 类的属性与方法(4): Replace // Replace var reg: TPerlRegEx; begin reg := TPerlRe ...