bzoj3252 攻略 贪心+dfs序+线段树
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=3252
题解
有一个非常显然的贪心思路:每次选择目前走到那儿能够获得的新权值最大的点。
证明的话,因为走过的点不再计入贡献,所以不这样走不可能有更优的。
考虑怎么维护每个点能够获得的新点权的最大值。
因为每个点只能做一次贡献,所以走过去以后对整个子树的作用都消失了,可以使用线段树区间修改。
还是因为每个点只能做一次贡献,所以每一次修改可以暴力跳父节点,直到跳到已经做过贡献的点为止。
时间复杂度 \(O((n+m)\log n)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 200000 + 7;
#define lc o << 1
#define rc o << 1 | 1
int n, k, dfc;
int a[N], f[N], dfn[N], pre[N], siz[N], vis[N];
ll dis[N];
struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
struct Node { ll add, max; int pos; } t[N << 2];
inline void pushup(int o) {
t[o].max = 0;
if (smax(t[o].max, t[lc].max)) t[o].pos = t[lc].pos;
if (smax(t[o].max, t[rc].max)) t[o].pos = t[rc].pos;
t[o].max += t[o].add;
// dbg("o = %d, t[o].max = %lld, t[o].pos = %d\n", o, t[o].max, t[o].pos);
}
inline void build(int o, int L, int R) {
if (L == R) return t[o].max = dis[pre[L]], t[o].pos = pre[L], (void)0;
int M = (L + R) >> 1;
build(lc, L, M), build(rc, M + 1, R);
pushup(o);
}
inline void qadd(int o, int L, int R, int l, int r, int k) {
if (l <= L && R <= r) return t[o].max += k, t[o].add += k, (void)0;
int M = (L + R) >> 1;
if (l <= M) qadd(lc, L, M, l, r, k);
if (r > M) qadd(rc, M + 1, R, l, r, k);
pushup(o);
}
inline void dfs(int x, int fa = 0) {
dfn[x] = ++dfc, pre[dfc] = x, siz[x] = 1, dis[x] = dis[fa] + a[x], f[x] = fa;
for fec(i, x, y) if (y != fa) dfs(y, x), siz[x] += siz[y];
}
inline void work() {
dfs(1), build(1, 1, n);
ll ans = 0;
while (k--) {
int p = t[1].pos;
ans += t[1].max;
// dbg("p = %d, val = %lld\n", p, t[1].max + t[1].add);
while (p && !vis[p]) qadd(1, 1, n, dfn[p], dfn[p] + siz[p] - 1, -a[p]), vis[p] = 1, p = f[p];
// dbg("end: p = %d\n", p);
}
printf("%lld\n", ans);
}
inline void init() {
read(n), read(k);
for (int i = 1; i <= n; ++i) read(a[i]);
int x, y;
for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj3252 攻略 贪心+dfs序+线段树的更多相关文章
- 【bzoj3252】攻略 贪心+DFS序+线段树
题目描述 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏. 今天他得到了一款新游戏<XX半岛>,这款游戏有n个场景(scene),某 ...
- [Bzoj3252]攻略(dfs序+线段树)
Description 题目链接 Solution 可以想到,每次肯定是拿最大价值为最优 考虑改变树上一个点的值,只会影响它的子树,也就是dfs序上的一个区间, 于是可以以dfs序建线段树,这样就变成 ...
- BZOJ 3252题解(贪心+dfs序+线段树)
题面 传送门 分析 此题做法很多,树形DP,DFS序+线段树,树链剖分都可以做 这里给出DFS序+线段树的代码 我们用线段树维护到根节点路径上节点权值之和的最大值,以及取到最大值的节点编号x 每次从根 ...
- BZOJ3252 攻略(贪心+dfs序+线段树)
考虑贪心,每次选价值最大的链.选完之后对于链上点dfs序暴力修改子树.因为每个点最多被选一次,复杂度非常正确. #include<iostream> #include<cstdio& ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- 【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树
题目大意 给你一棵有根树,有\(n\)个点.还有一个参数\(k\).你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完.现在有\(q\)个询问,每次给你一个\(k\), ...
- Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)
A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
随机推荐
- 手把手教你搞定个推iOS推送SDK集成
以下是一位开发者在集成个推iOS推送SDK过程中的真实经历. 作者:Ezreallp 一次偶然的机会,公司的项目要用到推送,我自己本来就很懒,不愿意去弄整套APNS的流程,刚好之前跟朋友聊起过他们的产 ...
- uva live 7637 Balanced String (贪心)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- picker-view组件
picker-view组件,是一个页面上的滚动选择器: 如果想进行滚动:他的子元素必须是 picker-view-column 组件: picker-view-column组件:只是提供了一个可视 ...
- React-Native 之 GD (五)属性声明和属性确认 及 占位图
1.在 React-Native 创建的自定义组件是可以复用的,而开发过程中一个组件可能会由多个人同时开发或者多个人使用一个组件,为了让开发人员之间减少沟通成本,我们会对某些必要的属性进行属性声明,让 ...
- AtomicInteger 源码分析
AtomicInteger AtomicInteger 能解决什么问题?什么时候使用 AtomicInteger? 支持原子更新的 int 值. 如何使用 AtomicInteger? 1)需要被多线 ...
- seaborn
Seaborn是基于matplotlib的Python数据可视化库. 它提供了一个高级界面,用于绘制引人入胜且内容丰富的统计图形. 一 风格及调色盘 风格 1 sns.set() 模式格式 2 s ...
- Python基础-7.1字符串的格式化
字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-310 ...
- Spring框架中AOP特性
1.AOP介绍 即:面向切面编程,在不改变原有方法的定义与使用.也不改变原程序流程的情况下,可以改变原有方法的功能{增加一些附加的功能,在指定的地方添加其他函数方法:} 2.其他的方法:[需要的四个接 ...
- C++调用C#类库函数
最近做一个信息化三维仿真项目,基于第三方提供的虚拟引擎通过VC++2008做二次开发,其中涉及到与C#客户端的融合以及数据交互的问题, 主要是VC++需要调用C#客户端提供的类库内的接口获取C#客户端 ...
- java _static 关键字
• 在类中,用static声明的成员变量为静态成员变量 ,或者叫做: 类属性,类变量. • 它为该类的公用变量,属于类,被该类的所有实例共享,在类被载入时被显式初始化, • 对于该类的所有对象来说,s ...