[论文理解] Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
简介
这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧,因为很早就对模型压缩比较感兴趣,所以抽了个时间看了一篇,代码也自己实现了一下,觉得还是挺容易的。这篇文章就模型压缩问题提出了一种剪枝针对BN层的剪枝方法,作者通过利用BN层的权重来评估输入channel的score,通过对score进行threshold过滤到score低的channel,在连接的时候这些score太小的channel的神经元就不参与连接,然后逐层剪枝,就达到了压缩效果。
就我个人而言,现在常用的attention mechanism我认为可以用来评估channel的score可以做一做文章,但是肯定是针对特定任务而言的,后面我会自己做一做实验,利用attention机制来模型剪枝。
方法
本文的方法如图所示,即
- 给定要保留层的比例,记下所有BN层大于该比例的权重
- 对模型先进行BN层的剪枝,即丢弃小于上面权重比例的参数
- 对模型进行卷积层剪枝(因为通常是卷积层后+BN,所以知道由前后的BN层可以知道卷积层权重size),对卷积层的size做匹配前后BN的对应channel元素丢弃的剪枝。
- 对FC层进行剪枝
感觉说不太清楚,但是一看代码就全懂了。。
代码
我自己实现了一下。
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg19
from torchsummary import summary
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.convnet = nn.Sequential(
nn.Conv2d(3,16,kernel_size = 3),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16,32,kernel_size = 3),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32,64,kernel_size = 3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64,128,kernel_size = 3),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.maxpool = nn.MaxPool2d(216)
self.fc = nn.Linear(128,3)
def forward(self,x):
x = self.convnet(x)
x = self.maxpool(x)
x = x.view(-1,x.size(1))
return self.fc(x)
if __name__ == "__main__":
net = Net()
net_new = Net()
idxs = []
idxs.append(range(3))
for module in net.modules():
if type(module) is nn.BatchNorm2d:
weight = module.weight.data
n = weight.size(0)
y,idx = torch.sort(weight)
n = int(0.8 * n)
idxs.append(idx[:n])
#print(module.weight.data.size())
i=1
for module in net_new.modules():
if type(module) is nn.Conv2d:
weight = module.weight.data.clone()
weight = weight[idxs[i],:,:,:]
weight = weight[:,idxs[i-1],:,:]
module.bias.data = module.bias.data[idxs[i]]
module.weight.data = weight
elif type(module) is nn.BatchNorm2d:
weight = module.weight.data.clone()
bias = module.bias.data.clone()
running_mean = module.running_mean.data.clone()
running_var = module.running_var.data.clone()
weight = weight[idxs[i]]
bias = bias[idxs[i]]
running_mean = running_mean[idxs[i]]
running_var = running_var[idxs[i]]
module.weight.data = weight
module.bias.data = bias
module.running_var.data = running_var
module.running_mean.data = running_mean
i += 1
elif type(module) is nn.Linear:
#print(module.weight.data.size())
module.weight.data = module.weight.data[:,idxs[-1]]
summary(net_new,(3,224,224),device = "cpu")
'''
这是对vgg的剪枝例子,文章中说了对其他网络的slimming例子
'''
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
from torchvision.models import vgg19
from models import *
# Prune settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar10)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--depth', type=int, default=19,
help='depth of the vgg')
parser.add_argument('--percent', type=float, default=0.5,
help='scale sparse rate (default: 0.5)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to the model (default: none)')
parser.add_argument('--save', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save):
os.makedirs(args.save)
model = vgg19(dataset=args.dataset, depth=args.depth)
if args.cuda:
model.cuda()
if args.model:
if os.path.isfile(args.model):
print("=> loading checkpoint '{}'".format(args.model))
checkpoint = torch.load(args.model)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.model, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
print(model)
total = 0
for m in model.modules():# 遍历vgg的每个module
if isinstance(m, nn.BatchNorm2d): # 如果发现BN层
total += m.weight.data.shape[0] # BN层的特征数目,total就是所有BN层的特征数目总和
bn = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.shape[0]
bn[index:(index+size)] = m.weight.data.abs().clone()
index += size # 把所有BN层的权重给CLONE下来
y, i = torch.sort(bn) # 这些权重排序
thre_index = int(total * args.percent) # 要保留的数量
thre = y[thre_index] # 最小的权重值
pruned = 0
cfg = []
cfg_mask = []
for k, m in enumerate(model.modules()):
if isinstance(m, nn.BatchNorm2d):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(thre).float().cuda()# 小于权重thre的为0,大于的为1
pruned = pruned + mask.shape[0] - torch.sum(mask) # 被剪枝的权重的总数
m.weight.data.mul_(mask) # 权重对应相乘
m.bias.data.mul_(mask) # 偏置也对应相乘
cfg.append(int(torch.sum(mask))) #第几个batchnorm保留多少。
cfg_mask.append(mask.clone()) # 第几个batchnorm 保留的weight
print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.
format(k, mask.shape[0], int(torch.sum(mask))))
elif isinstance(m, nn.MaxPool2d):
cfg.append('M')
pruned_ratio = pruned/total # 剪枝比例
print('Pre-processing Successful!')
# simple test model after Pre-processing prune (simple set BN scales to zeros)
def test(model):
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
raise ValueError("No valid dataset is given.")
model.eval()
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset))
acc = test(model)
# Make real prune
print(cfg)
newmodel = vgg(dataset=args.dataset, cfg=cfg)
if args.cuda:
newmodel.cuda()
# torch.nelement() 可以统计张量的个数
num_parameters = sum([param.nelement() for param in newmodel.parameters()]) # 元素个数,比如对于张量shape为(20,3,3,3),那么他的元素个数就是四者乘积也就是20*27 = 540
# 可以用来统计参数量 嘿嘿
savepath = os.path.join(args.save, "prune.txt")
with open(savepath, "w") as fp:
fp.write("Configuration: \n"+str(cfg)+"\n")
fp.write("Number of parameters: \n"+str(num_parameters)+"\n")
fp.write("Test accuracy: \n"+str(acc))
layer_id_in_cfg = 0 # 第几层
start_mask = torch.ones(3)
end_mask = cfg_mask[layer_id_in_cfg] #
for [m0, m1] in zip(model.modules(), newmodel.modules()):
if isinstance(m0, nn.BatchNorm2d):
# np.where 返回的是所有满足条件的数的索引,有多少个满足条件的数就有多少个索引,绝对的索引
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) # 大于0的所有数据的索引,squeeze变成向量
if idx1.size == 1: # 只有一个要变成数组的1个
idx1 = np.resize(idx1,(1,))
m1.weight.data = m0.weight.data[idx1.tolist()].clone() # 用经过剪枝的替换原来的
m1.bias.data = m0.bias.data[idx1.tolist()].clone()
m1.running_mean = m0.running_mean[idx1.tolist()].clone()
m1.running_var = m0.running_var[idx1.tolist()].clone()
layer_id_in_cfg += 1 # 下一层
start_mask = end_mask.clone() # 当前在处理的层的mask
if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC
end_mask = cfg_mask[layer_id_in_cfg]
elif isinstance(m0, nn.Conv2d): # 对卷积层进行剪枝
# 卷积后面会接bn
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
if idx1.size == 1:
idx1 = np.resize(idx1, (1,))
w1 = m0.weight.data[:, idx0.tolist(), :, :].clone() # 这个剪枝牛B了。。
w1 = w1[idx1.tolist(), :, :, :].clone() # 最终的权重矩阵
m1.weight.data = w1.clone()
elif isinstance(m0, nn.Linear):
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
m1.weight.data = m0.weight.data[:, idx0].clone()
m1.bias.data = m0.bias.data.clone()
torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, 'pruned.pth.tar'))
print(newmodel)
model = newmodel
test(model)
[论文理解] Learning Efficient Convolutional Networks through Network Slimming的更多相关文章
- 模型压缩-Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Networ ...
- [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...
- 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...
- 图像处理论文详解 | Deformable Convolutional Networks | CVPR | 2017
文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/a ...
- [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...
- 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...
- VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...
- 目标检测论文阅读:Deformable Convolutional Networks
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformab ...
- 论文学习:Fully Convolutional Networks for Semantic Segmentation
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...
随机推荐
- 07 Python之协程
协程: 协程是一种用户态的轻量级线程, 即协程是由用户程序自己控制调度的 1.Greenlet import time # import greenlet from greenlet import g ...
- Three.js类似于波浪的效果
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 解决:使用java连接Fastdfs,上传文件时报:SocketTimeOutException的问题
最近研究了下分布式存储Fastdfs,在centOS上配置完后,使用centOS或putty连接并上传图片,然后用浏览器读取storage server返回的URL,一切正常. 但是,使用eclips ...
- Vue自行封装常用组件-倒计时
倒计时组件,比较复杂一点,大神勿调侃,精确到毫秒,因为项目中多次出现倒计时,所以拿出来分享下 使用方法:1.在父组件中引入"uni-countdown" //import uniC ...
- new一个有父类的对象时各代码块的执行顺序问题
public class QQ { public static void main(String[] args) { new B(); } } class A { static { System.ou ...
- 17AJAX&JSON
1. 概念 ASynchronous JavaScript And XML 异步的JavaScript 和 XML1. 异步和同步:客户端和服务器端相互通信的基础上 客户端必须等待服务器端的响应 ...
- A RECURRENT NEURAL NETWORK WITHOUT CHAOS
本篇文章的介绍了一个非常简单的门限RNN(gated recurrent neural network), 这里有两扇门horizontal/forget gate和vertical/input ga ...
- LCA-tarjan understand 2
下面是一个最基础的LCA题目 http://poj.org/problem?id=1330 赤裸裸的 题意 输入cas 后 有cas组数据 输入 n 再输入n-1 条边 之后输入x ...
- Oracle 导入dump
1. 准备好.dmp文件
- Django 之 文件配置、pycharm及django连接数据库、创表及表的增删改查02
目录 创建项目后的文件夹配置 静态文件配置 接口前缀动态绑定 form表单回顾 根据请求方式的不同,返回前端不同的信息 pycharm 连接MYSQL数据库 Django 连接MYSQL数据库的配置 ...