Learning Efficient Convolutional Networks through Network Slimming

简介

这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧,因为很早就对模型压缩比较感兴趣,所以抽了个时间看了一篇,代码也自己实现了一下,觉得还是挺容易的。这篇文章就模型压缩问题提出了一种剪枝针对BN层的剪枝方法,作者通过利用BN层的权重来评估输入channel的score,通过对score进行threshold过滤到score低的channel,在连接的时候这些score太小的channel的神经元就不参与连接,然后逐层剪枝,就达到了压缩效果。

就我个人而言,现在常用的attention mechanism我认为可以用来评估channel的score可以做一做文章,但是肯定是针对特定任务而言的,后面我会自己做一做实验,利用attention机制来模型剪枝。

方法

本文的方法如图所示,即

  1. 给定要保留层的比例,记下所有BN层大于该比例的权重
  2. 对模型先进行BN层的剪枝,即丢弃小于上面权重比例的参数
  3. 对模型进行卷积层剪枝(因为通常是卷积层后+BN,所以知道由前后的BN层可以知道卷积层权重size),对卷积层的size做匹配前后BN的对应channel元素丢弃的剪枝。
  4. 对FC层进行剪枝

感觉说不太清楚,但是一看代码就全懂了。。

代码

我自己实现了一下。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg19
from torchsummary import summary class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.convnet = nn.Sequential(
nn.Conv2d(3,16,kernel_size = 3),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16,32,kernel_size = 3),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32,64,kernel_size = 3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64,128,kernel_size = 3),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.maxpool = nn.MaxPool2d(216)
self.fc = nn.Linear(128,3) def forward(self,x):
x = self.convnet(x)
x = self.maxpool(x)
x = x.view(-1,x.size(1))
return self.fc(x) if __name__ == "__main__":
net = Net()
net_new = Net()
idxs = []
idxs.append(range(3))
for module in net.modules():
if type(module) is nn.BatchNorm2d:
weight = module.weight.data
n = weight.size(0)
y,idx = torch.sort(weight)
n = int(0.8 * n)
idxs.append(idx[:n])
#print(module.weight.data.size())
i=1
for module in net_new.modules():
if type(module) is nn.Conv2d:
weight = module.weight.data.clone()
weight = weight[idxs[i],:,:,:]
weight = weight[:,idxs[i-1],:,:]
module.bias.data = module.bias.data[idxs[i]]
module.weight.data = weight
elif type(module) is nn.BatchNorm2d:
weight = module.weight.data.clone()
bias = module.bias.data.clone()
running_mean = module.running_mean.data.clone()
running_var = module.running_var.data.clone() weight = weight[idxs[i]]
bias = bias[idxs[i]]
running_mean = running_mean[idxs[i]]
running_var = running_var[idxs[i]] module.weight.data = weight
module.bias.data = bias
module.running_var.data = running_var
module.running_mean.data = running_mean
i += 1
elif type(module) is nn.Linear:
#print(module.weight.data.size())
module.weight.data = module.weight.data[:,idxs[-1]] summary(net_new,(3,224,224),device = "cpu")
'''
这是对vgg的剪枝例子,文章中说了对其他网络的slimming例子
'''
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
from torchvision.models import vgg19
from models import * # Prune settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar10)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--depth', type=int, default=19,
help='depth of the vgg')
parser.add_argument('--percent', type=float, default=0.5,
help='scale sparse rate (default: 0.5)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to the model (default: none)')
parser.add_argument('--save', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available() if not os.path.exists(args.save):
os.makedirs(args.save) model = vgg19(dataset=args.dataset, depth=args.depth)
if args.cuda:
model.cuda() if args.model:
if os.path.isfile(args.model):
print("=> loading checkpoint '{}'".format(args.model))
checkpoint = torch.load(args.model)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.model, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume)) print(model)
total = 0
for m in model.modules():# 遍历vgg的每个module
if isinstance(m, nn.BatchNorm2d): # 如果发现BN层
total += m.weight.data.shape[0] # BN层的特征数目,total就是所有BN层的特征数目总和 bn = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.shape[0]
bn[index:(index+size)] = m.weight.data.abs().clone()
index += size # 把所有BN层的权重给CLONE下来 y, i = torch.sort(bn) # 这些权重排序
thre_index = int(total * args.percent) # 要保留的数量
thre = y[thre_index] # 最小的权重值 pruned = 0
cfg = []
cfg_mask = []
for k, m in enumerate(model.modules()):
if isinstance(m, nn.BatchNorm2d):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(thre).float().cuda()# 小于权重thre的为0,大于的为1
pruned = pruned + mask.shape[0] - torch.sum(mask) # 被剪枝的权重的总数
m.weight.data.mul_(mask) # 权重对应相乘
m.bias.data.mul_(mask) # 偏置也对应相乘
cfg.append(int(torch.sum(mask))) #第几个batchnorm保留多少。
cfg_mask.append(mask.clone()) # 第几个batchnorm 保留的weight
print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.
format(k, mask.shape[0], int(torch.sum(mask))))
elif isinstance(m, nn.MaxPool2d):
cfg.append('M') pruned_ratio = pruned/total # 剪枝比例 print('Pre-processing Successful!') # simple test model after Pre-processing prune (simple set BN scales to zeros)
def test(model):
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
raise ValueError("No valid dataset is given.")
model.eval()
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum() print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset)) acc = test(model) # Make real prune
print(cfg)
newmodel = vgg(dataset=args.dataset, cfg=cfg)
if args.cuda:
newmodel.cuda()
# torch.nelement() 可以统计张量的个数
num_parameters = sum([param.nelement() for param in newmodel.parameters()]) # 元素个数,比如对于张量shape为(20,3,3,3),那么他的元素个数就是四者乘积也就是20*27 = 540
# 可以用来统计参数量 嘿嘿
savepath = os.path.join(args.save, "prune.txt")
with open(savepath, "w") as fp:
fp.write("Configuration: \n"+str(cfg)+"\n")
fp.write("Number of parameters: \n"+str(num_parameters)+"\n")
fp.write("Test accuracy: \n"+str(acc)) layer_id_in_cfg = 0 # 第几层
start_mask = torch.ones(3)
end_mask = cfg_mask[layer_id_in_cfg] #
for [m0, m1] in zip(model.modules(), newmodel.modules()):
if isinstance(m0, nn.BatchNorm2d):
# np.where 返回的是所有满足条件的数的索引,有多少个满足条件的数就有多少个索引,绝对的索引
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) # 大于0的所有数据的索引,squeeze变成向量
if idx1.size == 1: # 只有一个要变成数组的1个
idx1 = np.resize(idx1,(1,))
m1.weight.data = m0.weight.data[idx1.tolist()].clone() # 用经过剪枝的替换原来的
m1.bias.data = m0.bias.data[idx1.tolist()].clone()
m1.running_mean = m0.running_mean[idx1.tolist()].clone()
m1.running_var = m0.running_var[idx1.tolist()].clone()
layer_id_in_cfg += 1 # 下一层
start_mask = end_mask.clone() # 当前在处理的层的mask
if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC
end_mask = cfg_mask[layer_id_in_cfg]
elif isinstance(m0, nn.Conv2d): # 对卷积层进行剪枝
# 卷积后面会接bn
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
if idx1.size == 1:
idx1 = np.resize(idx1, (1,))
w1 = m0.weight.data[:, idx0.tolist(), :, :].clone() # 这个剪枝牛B了。。
w1 = w1[idx1.tolist(), :, :, :].clone() # 最终的权重矩阵
m1.weight.data = w1.clone()
elif isinstance(m0, nn.Linear):
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
m1.weight.data = m0.weight.data[:, idx0].clone()
m1.bias.data = m0.bias.data.clone() torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, 'pruned.pth.tar')) print(newmodel)
model = newmodel
test(model)

[论文理解] Learning Efficient Convolutional Networks through Network Slimming的更多相关文章

  1. 模型压缩-Learning Efficient Convolutional Networks through Network Slimming

    Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Networ ...

  2. [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...

  3. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  4. 图像处理论文详解 | Deformable Convolutional Networks | CVPR | 2017

    文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/a ...

  5. [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...

  6. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  7. VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition

    Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...

  8. 目标检测论文阅读:Deformable Convolutional Networks

    https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformab ...

  9. 论文学习:Fully Convolutional Networks for Semantic Segmentation

    发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...

随机推荐

  1. 梳理common-io工具包

    title: 梳理common-io工具包 comments: false date: 2019-08-28 14:21:58 description: 对common-io工具包中的常用类进行整理, ...

  2. sqlserver2016 management tool v18

    安装完sql server 2016 sp1版本后再安装管理工具v18版本,启动管理工具,启动不起来,自动退出了,没有任何反应. 解决该问题方案: 找到Microsoft.VisualStudio.S ...

  3. C#程序集及程序集概念介绍

    一.源代码-面向CLR的编译器-托管模块-(元数据&IL代码)中介绍了编译器将源文件编译成托管模块(中间语言和元数据),本文主要介绍如何将托管模块合并成程序集. 1.程序集的基本概念 2.程序 ...

  4. ELF文件格式理解

    ELF(Executable and Linking Format)是一种对象文件的格式,用于定义不同类型的对象文件(Object files)中都放了什么东西.以及都以什么样的格式去放这些东西.它自 ...

  5. Notepad++ 文件丢失了,找回历史文件方法

    一开始我还以为文件丢失找不到了,心凉了半截,后来找到了它的备份路径 C:\Users\Administrator\AppData\Roaming\Notepad++\backup

  6. Linux 日志分析

    学会查看日志文件是一件很有意义的事,因为在Linux系统中运行的程序通常会把一些系统消息和错误消息写入对应的日志中,若是一旦出现问题,我们就可以通过查看日志来迅速定位,及时解决故障. 日志的三种类型 ...

  7. BZOJ1912 最长链树形DP

    每次求出最长链更新答案后要将最长链上的边权改为-1 写的贼长 还可以优化... /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) mem ...

  8. 02bag模板

    cost->体积          weight->价值 hdu2844 可达/不可达 #include <stdio.h> #include <algorithm> ...

  9. selenium-Xpath使用方法

    01:什么是Xpath Xpath是一门xml文档中查找信息的语言,Xpath可用来在xml文档中对元素和属性进行遍历,主流的浏览器都支持xpath,因为HTML页面在DOM中表示xhtml文档 xp ...

  10. Angular7和leaflet一起使用时的作用域不一致

    Angular7和leaflet一起使用时的作用域不一致问题,使用(e) =>可以完美解决. 使用原始的JavaScript: map.on("click", functio ...