HDU 6155 Subsequence Count (DP、线性代数、线段树)
题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=6155
题解
DP+线代好题。(考场上过多时间刚前两题,没怎么想这题……)
首先列出一个DP式: 设\(dp[i][j]\)表示到第\(i\)位最后一位是\(j\)有多少个本质不同的子序列(最后一位不一定取到第\(i\)位),考虑转移:
假设\(a_i=0\), 那么\(dp[i][0]=2\times dp[i-1][0]+dp[i-1][1]-dp[i-1][0]+1=dp[i-1][0]+dp[i-1][1]+1\), 原因是考虑\(1\)到\(i-1\)中的子序列,可以在后面添一个0也可以不添,但是添完之后恰好有\(dp[i-1][0]\)个在前面出现过所以减掉,再加上前面以1结尾的串补上该处的0和单独一个0; \(dp[i][1]=dp[i-1][1]\). \(a_i=1\)同理。
(好吧我知道这个DP还有其他的做法,但是这个还是最容易数据结构维护的)
然后考虑如果没有修改怎么维护: 搞一个\(3\times 3\)的矩阵$$\textbf{A}_0\times \begin{bmatrix}f_0\f_1\1\end{bmatrix}=\begin{bmatrix}f_0+f_1+1\f_1\1\end{bmatrix}, \textbf{A}_1\times \begin{bmatrix}f_0\f_1\1\end{bmatrix}=\begin{bmatrix}f_0\f_0+f_1+1\1\end{bmatrix}$$
很轻易可以得到$$\rm\textbf{A}_0=\begin{bmatrix}1&1&1\0&1&0\0&0&1\end{bmatrix}, \rm\textbf{A}_1=\begin{bmatrix}1&0&0\1&1&1\0&0&1\end{bmatrix}$$
线段树维护区间乘积即可。
区间反转怎么办?维护两棵线段树?可能会被卡常,有更好的方法。(这也是此题的精妙之处)
我们发现矩阵\(\textbf{A}_0\)经过交换\(1,2\)行、交换\(1,2\)列的操作之后可以变成矩阵\(\rm\textbf{A}_1\), 矩阵\(\textbf{A}_1\)经过相同操作也可以变成\(\textbf{A}_0\).
也就是说我们构造初等矩阵\(\textbf{E}=\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\),则有\(\textbf{E}=\textbf{E}^{-1}\), \(\textbf{A}_1=\textbf{E}\textbf{A}_0\textbf{E}, \textbf{A}_0=\textbf{E}\textbf{A}_1\textbf{E}\).
因此有\(\prod^{R}_{i=L}(\textbf{E}\textbf{T}_i\textbf{E})=\textbf{E}(\prod^R_{i=L}\textbf{T}_i)\textbf{E}\), 于是直接把乘积矩阵进行上述初等变换即可!
时间复杂度\(O(n\log n)\).
UPD: 刚才发现有大佬用\(2\times 2\)的矩阵维护,大概方法是令\(\textbf{A}_0\times\begin{bmatrix}f_0+1\\f_1+1\end{bmatrix}=\begin{bmatrix}f_0+f_1+2\\f_1+1\end{bmatrix}\), \(1\)同理。只能说神仙到处是啊……
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define llong long long
using namespace std;
const int N = 1e5;
const int P = 1e9+7;
void updsum(llong &x,llong y) {x = x+y>=P?x+y-P:x+y;}
struct Matrix
{
llong a[3][3];
Matrix() {a[0][0] = a[0][1] = a[0][2] = a[1][0] = a[1][1] = a[1][2] = a[2][0] = a[2][1] = a[2][2] = 0;}
void unitize() {a[0][0] = a[1][1] = a[2][2] = 1ll; a[0][1] = a[0][2] = a[1][0] = a[1][2] = a[2][0] = a[2][1] = 0ll;}
Matrix operator *(const Matrix &arg) const
{
Matrix ret;
updsum(ret.a[0][0],a[0][0]*arg.a[0][0]%P);
updsum(ret.a[0][0],a[0][1]*arg.a[1][0]%P);
updsum(ret.a[0][0],a[0][2]*arg.a[2][0]%P);
updsum(ret.a[0][1],a[0][0]*arg.a[0][1]%P);
updsum(ret.a[0][1],a[0][1]*arg.a[1][1]%P);
updsum(ret.a[0][1],a[0][2]*arg.a[2][1]%P);
updsum(ret.a[0][2],a[0][0]*arg.a[0][2]%P);
updsum(ret.a[0][2],a[0][1]*arg.a[1][2]%P);
updsum(ret.a[0][2],a[0][2]*arg.a[2][2]%P);
updsum(ret.a[1][0],a[1][0]*arg.a[0][0]%P);
updsum(ret.a[1][0],a[1][1]*arg.a[1][0]%P);
updsum(ret.a[1][0],a[1][2]*arg.a[2][0]%P);
updsum(ret.a[1][1],a[1][0]*arg.a[0][1]%P);
updsum(ret.a[1][1],a[1][1]*arg.a[1][1]%P);
updsum(ret.a[1][1],a[1][2]*arg.a[2][1]%P);
updsum(ret.a[1][2],a[1][0]*arg.a[0][2]%P);
updsum(ret.a[1][2],a[1][1]*arg.a[1][2]%P);
updsum(ret.a[1][2],a[1][2]*arg.a[2][2]%P);
updsum(ret.a[2][0],a[2][0]*arg.a[0][0]%P);
updsum(ret.a[2][0],a[2][1]*arg.a[1][0]%P);
updsum(ret.a[2][0],a[2][2]*arg.a[2][0]%P);
updsum(ret.a[2][1],a[2][0]*arg.a[0][1]%P);
updsum(ret.a[2][1],a[2][1]*arg.a[1][1]%P);
updsum(ret.a[2][1],a[2][2]*arg.a[2][1]%P);
updsum(ret.a[2][2],a[2][0]*arg.a[0][2]%P);
updsum(ret.a[2][2],a[2][1]*arg.a[1][2]%P);
updsum(ret.a[2][2],a[2][2]*arg.a[2][2]%P);
return ret;
}
} trans[2];
char a[N+3];
struct SgTNode
{
Matrix x; bool inv;
} sgt[(N<<2)+3];
void build(int u,int le,int ri)
{
if(le==ri) {sgt[u].x = trans[a[le]]; return;}
int mid = (le+ri)>>1;
build(u<<1,le,mid); build(u<<1|1,mid+1,ri);
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
}
void maketag(int u)
{
sgt[u].inv ^= 1;
swap(sgt[u].x.a[0][0],sgt[u].x.a[0][1]);
swap(sgt[u].x.a[1][0],sgt[u].x.a[1][1]);
swap(sgt[u].x.a[2][0],sgt[u].x.a[2][1]);
swap(sgt[u].x.a[0][0],sgt[u].x.a[1][0]);
swap(sgt[u].x.a[0][1],sgt[u].x.a[1][1]);
swap(sgt[u].x.a[0][2],sgt[u].x.a[1][2]);
}
void pushdown(int u)
{
if(sgt[u].inv)
{
maketag(u<<1);
maketag(u<<1|1);
sgt[u].inv = 0;
}
}
void inverse(int u,int le,int ri,int lb,int rb)
{
if(le>=lb && ri<=rb) {maketag(u); return;}
pushdown(u);
int mid = (le+ri)>>1;
if(lb<=mid) {inverse(u<<1,le,mid,lb,rb);}
if(rb>mid) {inverse(u<<1|1,mid+1,ri,lb,rb);}
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
}
Matrix queryprod(int u,int le,int ri,int lb,int rb)
{
if(le>=lb && ri<=rb) {return sgt[u].x;}
pushdown(u);
int mid = (le+ri)>>1; Matrix ret; ret.unitize();
if(lb<=mid) {ret = ret*queryprod(u<<1,le,mid,lb,rb);}
if(rb>mid) {ret = ret*queryprod(u<<1|1,mid+1,ri,lb,rb);}
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
return ret;
}
int n,q;
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
scanf("%s",a+1); for(int i=1; i<=n; i++) a[i] -= 48;
trans[0].a[0][0] = 1; trans[0].a[0][1] = 1; trans[0].a[0][2] = 1; trans[0].a[1][1] = 1; trans[0].a[2][2] = 1;
trans[1].a[0][0] = 1; trans[1].a[1][0] = 1; trans[1].a[1][1] = 1; trans[1].a[1][2] = 1; trans[1].a[2][2] = 1;
build(1,1,n);
for(int i=1; i<=q; i++)
{
int opt,l,r; scanf("%d%d%d",&opt,&l,&r);
if(opt==1)
{
inverse(1,1,n,l,r);
}
else
{
Matrix ans = queryprod(1,1,n,l,r);
printf("%lld\n",(ans.a[0][2]+ans.a[1][2])%P);
}
}
memset(sgt,0,sizeof(sgt));
}
return 0;
}
HDU 6155 Subsequence Count (DP、线性代数、线段树)的更多相关文章
- HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解
题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- hdu 6155 - Subsequence Count
话说这题比赛时候过的好少,连题都没读TOT 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i ...
- HDU.6155.Subsequence Count(线段树 矩阵)
题目链接 首先考虑询问[1,n]怎么做 设 f[i][0/1]表示[1,i]以0/1结尾的不同子序列个数 则 \(if(A[i]) f[i][1] = f[i-1][0] + f[i-1][1] + ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模
Multiply game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 【POJ 2777】 Count Color(线段树区间更新与查询)
[POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4094 ...
随机推荐
- 创建Maven Web项目时很慢解决办法
点击加号,Name输入archetypeCatalog,Value输入internal archetypeCatalog表示插件使用的archetype元数据,不加这个参数时默认为remote,loc ...
- 什么是 Serverless 应用引擎?优势有哪些?
Serverless 应用引擎(Serverless App Engine,简称 SAE)是面向应用的 Serverless PaaS 平台,能够帮助 PaaS 层用户免运维 IaaS,按需使用,按量 ...
- JS基础_强制类型转换-String
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- O014、云计算与OpenStack
参考https://www.cnblogs.com/CloudMan6/p/5334760.html 云计算 基本概念 所有的新事物都不是突然冒出来的,都有前世和今生.云计算也是IT技术不断发 ...
- Object 对象(对象的分类、属性(属性名和属性值)、基本数据类型与引用数据类型区别)
Object——引用数据类型 基本数据类型的不足之处:基本数据类型是单一的值,不能表现出值与值之间的所属关系 object分为内建对象.宿主对象和自定义对象 a 内建对象:ES标准中定义的对象,在任何 ...
- LLVM 安装教程(包安装)
LLVM 安装教程 环境:ubuntu16.04 llvm-4.0 clang-4.0 步骤: 1.依赖库安装 $ sudo apt-get install build-essential curl ...
- vue + mixin混入对象使用
vue提供的混入对象mixin,类似于一个公共的组件,其他任何组件都可以使用它.我更经常的是把它当成一个公共方法来使用 在项目中有些多次使用的data数据,method方法,或者自定义的vue指令都可 ...
- OpenSSL源码简介
1.X.509标准 x509是由国际电信联盟(ITU-T)制定的数字证书标准:包含公钥和用户标志符.CA等: x509是数字证书的规范,P7和P12是两种封装形式:X.509是常见通用的证书格式.所有 ...
- BLOB和CLOB
mysql各数据类型及字节长度一览表: 数据类型 字节长度 范围或用法 Bit 1 无符号[0,255],有符号[-128,127],天缘博客备注:BIT和BOOL布尔型都占用1字节 TinyInt ...
- 通用mapper将另外一个同名的表生成在同一个实体及mapper中
今天遇见了一个在网上都搜索不到的错误,使用通过mapper生成实体及mapper文件时会将另外一个数据库的同名文件生成在一个实体及mapper中,这样就会造成一个实体和mapper中有两个表的字段,经 ...