HDU 6155 Subsequence Count (DP、线性代数、线段树)
题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=6155
题解
DP+线代好题。(考场上过多时间刚前两题,没怎么想这题……)
首先列出一个DP式: 设\(dp[i][j]\)表示到第\(i\)位最后一位是\(j\)有多少个本质不同的子序列(最后一位不一定取到第\(i\)位),考虑转移:
假设\(a_i=0\), 那么\(dp[i][0]=2\times dp[i-1][0]+dp[i-1][1]-dp[i-1][0]+1=dp[i-1][0]+dp[i-1][1]+1\), 原因是考虑\(1\)到\(i-1\)中的子序列,可以在后面添一个0也可以不添,但是添完之后恰好有\(dp[i-1][0]\)个在前面出现过所以减掉,再加上前面以1结尾的串补上该处的0和单独一个0; \(dp[i][1]=dp[i-1][1]\). \(a_i=1\)同理。
(好吧我知道这个DP还有其他的做法,但是这个还是最容易数据结构维护的)
然后考虑如果没有修改怎么维护: 搞一个\(3\times 3\)的矩阵$$\textbf{A}_0\times \begin{bmatrix}f_0\f_1\1\end{bmatrix}=\begin{bmatrix}f_0+f_1+1\f_1\1\end{bmatrix}, \textbf{A}_1\times \begin{bmatrix}f_0\f_1\1\end{bmatrix}=\begin{bmatrix}f_0\f_0+f_1+1\1\end{bmatrix}$$
很轻易可以得到$$\rm\textbf{A}_0=\begin{bmatrix}1&1&1\0&1&0\0&0&1\end{bmatrix}, \rm\textbf{A}_1=\begin{bmatrix}1&0&0\1&1&1\0&0&1\end{bmatrix}$$
线段树维护区间乘积即可。
区间反转怎么办?维护两棵线段树?可能会被卡常,有更好的方法。(这也是此题的精妙之处)
我们发现矩阵\(\textbf{A}_0\)经过交换\(1,2\)行、交换\(1,2\)列的操作之后可以变成矩阵\(\rm\textbf{A}_1\), 矩阵\(\textbf{A}_1\)经过相同操作也可以变成\(\textbf{A}_0\).
也就是说我们构造初等矩阵\(\textbf{E}=\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\),则有\(\textbf{E}=\textbf{E}^{-1}\), \(\textbf{A}_1=\textbf{E}\textbf{A}_0\textbf{E}, \textbf{A}_0=\textbf{E}\textbf{A}_1\textbf{E}\).
因此有\(\prod^{R}_{i=L}(\textbf{E}\textbf{T}_i\textbf{E})=\textbf{E}(\prod^R_{i=L}\textbf{T}_i)\textbf{E}\), 于是直接把乘积矩阵进行上述初等变换即可!
时间复杂度\(O(n\log n)\).
UPD: 刚才发现有大佬用\(2\times 2\)的矩阵维护,大概方法是令\(\textbf{A}_0\times\begin{bmatrix}f_0+1\\f_1+1\end{bmatrix}=\begin{bmatrix}f_0+f_1+2\\f_1+1\end{bmatrix}\), \(1\)同理。只能说神仙到处是啊……
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define llong long long
using namespace std;
const int N = 1e5;
const int P = 1e9+7;
void updsum(llong &x,llong y) {x = x+y>=P?x+y-P:x+y;}
struct Matrix
{
llong a[3][3];
Matrix() {a[0][0] = a[0][1] = a[0][2] = a[1][0] = a[1][1] = a[1][2] = a[2][0] = a[2][1] = a[2][2] = 0;}
void unitize() {a[0][0] = a[1][1] = a[2][2] = 1ll; a[0][1] = a[0][2] = a[1][0] = a[1][2] = a[2][0] = a[2][1] = 0ll;}
Matrix operator *(const Matrix &arg) const
{
Matrix ret;
updsum(ret.a[0][0],a[0][0]*arg.a[0][0]%P);
updsum(ret.a[0][0],a[0][1]*arg.a[1][0]%P);
updsum(ret.a[0][0],a[0][2]*arg.a[2][0]%P);
updsum(ret.a[0][1],a[0][0]*arg.a[0][1]%P);
updsum(ret.a[0][1],a[0][1]*arg.a[1][1]%P);
updsum(ret.a[0][1],a[0][2]*arg.a[2][1]%P);
updsum(ret.a[0][2],a[0][0]*arg.a[0][2]%P);
updsum(ret.a[0][2],a[0][1]*arg.a[1][2]%P);
updsum(ret.a[0][2],a[0][2]*arg.a[2][2]%P);
updsum(ret.a[1][0],a[1][0]*arg.a[0][0]%P);
updsum(ret.a[1][0],a[1][1]*arg.a[1][0]%P);
updsum(ret.a[1][0],a[1][2]*arg.a[2][0]%P);
updsum(ret.a[1][1],a[1][0]*arg.a[0][1]%P);
updsum(ret.a[1][1],a[1][1]*arg.a[1][1]%P);
updsum(ret.a[1][1],a[1][2]*arg.a[2][1]%P);
updsum(ret.a[1][2],a[1][0]*arg.a[0][2]%P);
updsum(ret.a[1][2],a[1][1]*arg.a[1][2]%P);
updsum(ret.a[1][2],a[1][2]*arg.a[2][2]%P);
updsum(ret.a[2][0],a[2][0]*arg.a[0][0]%P);
updsum(ret.a[2][0],a[2][1]*arg.a[1][0]%P);
updsum(ret.a[2][0],a[2][2]*arg.a[2][0]%P);
updsum(ret.a[2][1],a[2][0]*arg.a[0][1]%P);
updsum(ret.a[2][1],a[2][1]*arg.a[1][1]%P);
updsum(ret.a[2][1],a[2][2]*arg.a[2][1]%P);
updsum(ret.a[2][2],a[2][0]*arg.a[0][2]%P);
updsum(ret.a[2][2],a[2][1]*arg.a[1][2]%P);
updsum(ret.a[2][2],a[2][2]*arg.a[2][2]%P);
return ret;
}
} trans[2];
char a[N+3];
struct SgTNode
{
Matrix x; bool inv;
} sgt[(N<<2)+3];
void build(int u,int le,int ri)
{
if(le==ri) {sgt[u].x = trans[a[le]]; return;}
int mid = (le+ri)>>1;
build(u<<1,le,mid); build(u<<1|1,mid+1,ri);
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
}
void maketag(int u)
{
sgt[u].inv ^= 1;
swap(sgt[u].x.a[0][0],sgt[u].x.a[0][1]);
swap(sgt[u].x.a[1][0],sgt[u].x.a[1][1]);
swap(sgt[u].x.a[2][0],sgt[u].x.a[2][1]);
swap(sgt[u].x.a[0][0],sgt[u].x.a[1][0]);
swap(sgt[u].x.a[0][1],sgt[u].x.a[1][1]);
swap(sgt[u].x.a[0][2],sgt[u].x.a[1][2]);
}
void pushdown(int u)
{
if(sgt[u].inv)
{
maketag(u<<1);
maketag(u<<1|1);
sgt[u].inv = 0;
}
}
void inverse(int u,int le,int ri,int lb,int rb)
{
if(le>=lb && ri<=rb) {maketag(u); return;}
pushdown(u);
int mid = (le+ri)>>1;
if(lb<=mid) {inverse(u<<1,le,mid,lb,rb);}
if(rb>mid) {inverse(u<<1|1,mid+1,ri,lb,rb);}
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
}
Matrix queryprod(int u,int le,int ri,int lb,int rb)
{
if(le>=lb && ri<=rb) {return sgt[u].x;}
pushdown(u);
int mid = (le+ri)>>1; Matrix ret; ret.unitize();
if(lb<=mid) {ret = ret*queryprod(u<<1,le,mid,lb,rb);}
if(rb>mid) {ret = ret*queryprod(u<<1|1,mid+1,ri,lb,rb);}
sgt[u].x = sgt[u<<1].x*sgt[u<<1|1].x;
return ret;
}
int n,q;
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
scanf("%s",a+1); for(int i=1; i<=n; i++) a[i] -= 48;
trans[0].a[0][0] = 1; trans[0].a[0][1] = 1; trans[0].a[0][2] = 1; trans[0].a[1][1] = 1; trans[0].a[2][2] = 1;
trans[1].a[0][0] = 1; trans[1].a[1][0] = 1; trans[1].a[1][1] = 1; trans[1].a[1][2] = 1; trans[1].a[2][2] = 1;
build(1,1,n);
for(int i=1; i<=q; i++)
{
int opt,l,r; scanf("%d%d%d",&opt,&l,&r);
if(opt==1)
{
inverse(1,1,n,l,r);
}
else
{
Matrix ans = queryprod(1,1,n,l,r);
printf("%lld\n",(ans.a[0][2]+ans.a[1][2])%P);
}
}
memset(sgt,0,sizeof(sgt));
}
return 0;
}
HDU 6155 Subsequence Count (DP、线性代数、线段树)的更多相关文章
- HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解
题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- hdu 6155 - Subsequence Count
话说这题比赛时候过的好少,连题都没读TOT 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i ...
- HDU.6155.Subsequence Count(线段树 矩阵)
题目链接 首先考虑询问[1,n]怎么做 设 f[i][0/1]表示[1,i]以0/1结尾的不同子序列个数 则 \(if(A[i]) f[i][1] = f[i-1][0] + f[i-1][1] + ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模
Multiply game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 【POJ 2777】 Count Color(线段树区间更新与查询)
[POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4094 ...
随机推荐
- 草地排水 洛谷P2740 最大流 入门题目
草地排水 洛谷P2740 最大流入门题目 题意 在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水.这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间.因此,农夫约翰修建了一 ...
- # [爬虫Demo] pyquery+csv爬取猫眼电影top100
目录 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 代码君 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 https://maoyan.co ...
- # 模乘(解决乘法取模爆long long)
模乘(解决乘法取模爆long long) 二进制思想,变乘法为多次加法,具体思想跟着代码手算一遍就理解了,挺简单的 ll qmul(ll a,ll b,ll m) { ll ans=0; while( ...
- SVN服务器搭建与配置管理
1.下载和搭建SVN服务器 现在Subversion已经迁移到Apache网站上了,下载地址:http://subversion.apache.org/packages.html,这是二进制文件包的下 ...
- 51nod 1251 Fox序列的数量 (容斥)
枚举最多数字的出现次数$k$, 考虑其他数字的分配情况. 对至少$x$种数出现$\ge k$次的方案容斥, 有 $\sum (-1)^x\binom{m-1}{x}\binom{n-(x+1)k+m- ...
- command----常用命令更新ing
common commands 1:split---拆分文件 [root@localhost split]# split -b 1M split.tar.gz split_ #按1M拆分文件 [roo ...
- @RequestMapping-占位符映射
占位符映射
- es分数_score衰减函数
1.按日期衰变 GET news/doc/_search { "query" : { "function_score": { "query" ...
- js截取字符串相关的知识点
截取字符串中的数字 1.使用parseInt() var str ="4500元"; var num = parseInt(str); console.log(num);//450 ...
- 特产网站自适应CSS
下面是一个特产网站自适应CSS,这个特产自适应CSS通过屏幕宽度大小来进行适应的,而不是根据UA来判断,就加快了判断的速度,所以速度很快 中国特产站排名还是很好的,特别是手机端 li { list-s ...