Iterators

对torchtext的batch实现的修改算法原理

Batching matters a ton for speed. We want to have very evenly divided batches, with absolutely minimal padding. To do this we have to hack a bit around the default torchtext batching. This code patches their default batching to make sure we search over enough sentences to find tight batches.

这里是对torchtext中默认的batching操作进行的优化修改。

参考:https://towardsdatascience.com/how-to-use-torchtext-for-neural-machine-translation-plus-hack-to-make-it-5x-faster-77f3884d95

Torchtext本身已经很好了,并且sort_key使得dataset中的数据排序,这样batching后序列长度相近的会被放在同一个batch中,可以很大程度上降低padding的个数。

但是下面代码又进行了优化:根据每个batch中序列的最大长度,动态更改batch_size,使得可以更好的利用计算资源。

举个例子:

假设你的RAM每个iteration可以处理1500个tokens, batch_size = 20, 那么只有当batch中的序列长度为sequence length = 1500 / 20 = 75时,才可以将计算资源利用完全。

现实中,每个batch的sequence length的显然是在变化的,那么如果希望尽量多的利用计算资源,就需要可以动态调整当前的batch_size.

Transformer中的MyIterator重载了data.Iterator中的create_batches函数:

 class MyIterator(data.Iterator):
def create_batches(self):
if self.train:
def pool(d, random_shuffler):
for p in data.batch(d, self.batch_size * 100):
p_batch = data.batch(
sorted(p, key=self.sort_key),
self.batch_size, self.batch_size_fn)
for b in random_shuffler(list(p_batch)):
yield b
self.batches = pool(self.data(), self.random_shuffler) else:
self.batches = []
for b in data.batch(self.data(), self.batch_size,
self.batch_size_fn):
self.batches.append(sorted(b, key=self.sort_key)) def rebatch(pad_idx, batch):
"Fix order in torchtext to match ours"
src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1)
return Batch(src, trg, pad_idx)

pool函数

其中pool函数的功能与https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py中定义的class BucketIterator(Iterator)的pool函数功能类似。

1. 将原始的data分成大小为 100 * batch_size的一些chunks => (以上迭代 p 即为 每个chunk)

2. 在每个chunk中根据 sort_key 对examples进行排序,并对每个chunk按照batch_size分成100个batch =>

( p_batch = data.batch( sorted(p, key=self.sort_key), self.batch_size, self.batch_size_fn) )

3. 将这些chunks进行shuffle  => (random_shuffler(list(p_batch)))

4. 在每个chunk中再把examples分成 大小为 batch_size 的 100 个 batch => (以上 b 即为每个 batch)

5. 生成器每次 yield一个batch  => (yield b)

[The Annotated Transformer] Iterators的更多相关文章

  1. [NLP] The Annotated Transformer 代码修正

    1. RuntimeError: "exp" not implemented for 'torch.LongTensor' class PositionalEncoding(nn. ...

  2. 【译】图解Transformer

    目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 ...

  3. 深入理解Transformer及其源码解读

    深度学习广泛应用于各个领域.基于transformer的预训练模型(gpt/bertd等)基本已统治NLP深度学习领域,可见transformer的重要性.本文结合<Attention is a ...

  4. Transformer模型---encoder

    一.简介 论文链接:<Attention is all you need> 由google团队在2017年发表于NIPS,Transformer 是一种新的.基于 attention 机制 ...

  5. zz全面拥抱Transformer

    放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较 在辞旧迎新的时刻,大家都在忙着回顾过去一年的成绩(或者在灶台前含泪数锅),并对2019做着规划,当然也 ...

  6. Transformer的PyTorch实现

    Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃 ...

  7. 动手学Transformer

    动手实现Transformer,所有代码基于tensorflow2.0,配合illustrated-transformer更香. 模型架构 Encoder+Decoder Encoder Decode ...

  8. 深入浅出Transformer

    Transformer Transformer是NLP的颠覆者,它创造性地用非序列模型来处理序列化的数据,而且还获得了大成功.更重要的是,NLP真的可以"深度"学习了,各种基于tr ...

  9. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

随机推荐

  1. STL vector常见用法详解

    <算法笔记>中摘取 vector常见用法详解 1. vector的定义 vector<typename> name; //typename可以是任何基本类型,例如int, do ...

  2. 牛客 2B 树 (组合计数)

    传送门 大意: 给定n节点树, 求划分为不超过$k$个连通块的方案数. n,k<=300. 核心观察是每个连通块深度最低的点固定以后染色方案就固定了. 所以答案为$\sum\limits_{i= ...

  3. 无法发布-旧项目发布时出现:该项目中不存在目标“GatherAllFilesToPublish”。

    在项目文件夹下面找到 xxxx.csproj 文件,使用 VisualStudio Code 打开(或者任意编辑器,VisualStudio 可能无法编辑) 将以下节点进行更改 <Import ...

  4. 本人亲测-Setup Factory打包教程(整理并优化)

    Setup Factory 9 总结 一:安装完毕立刻启动 result = Shell.Execute(SessionVar.Expand("%AppFolder%\\消息助手.exe&q ...

  5. js 重要函数

    1. Array.some some() 方法用于检测数组中的元素是否满足指定条件(函数提供) 如果有一个元素满足条件,则表达式返回true , 剩余的元素不会再执行检测.如果没有满足条件的元素,则返 ...

  6. LeetCode OJ -- 无重复字符的最长子串

    给定一个字符串,找出不含有重复字符的 最长子串 的长度. 示例: 给定 "abcabcbb" ,没有重复字符的最长子串是 "abc" ,那么长度就是3. 给定  ...

  7. 手动写一个类支持foreach循环

    之前初学时看过可以实现Iterable接口实现Iterator迭代器的支持,并且也支持foreach循环.现在学习了数据结构,手动写一个单链表支持foreach循环吧. 手写foreach循环步骤: ...

  8. ubuntu下安装tensorflow-gpu版本过程

    我之前已经安装了cpu-only版的tensorflow,所以现在要先把原先的tf卸载 sudo pip uninstall tensorflow sudo pip3 install tensorfl ...

  9. kotlin面向对象之枚举、印章类

    枚举: 由于这个比较简单,直接上代码: 下面使用一下: 印章类[Sealed class]: 听着挺新鲜的,下面以一个具体的场景来对它进行学习: 动物园里有三个动物如下,在天黑时它们污污的在做“游戏” ...

  10. Spring-data-jpa操作数据库环境配置

    application.xml文件 <?xml version="1.0" encoding="UTF-8"?><beans xmlns=&q ...