题目链接

题目描述

给定一张强联通图,求有多少种边的存在情况满足图依然强联通。

\(n\leq15\)

Sol

首先正难则反,考虑用总数减去不强联通的。

考虑一张不强联通的图,缩点后一定是一个 DAG,好像可以对 DAG 进行计数。

诈一看这个做不了,因为缩点后计数是不可能在dp过程中实现的。

但我们按照 DAG 计数的思路的话其实并不需要真的知道 DAG 缩点后的形态。

我们类似 DAG 计数的话那么枚举这些缩完点后的点至少有多少个入度为 0 的点,然后容斥计算。

过程中我们用到的只是有 奇数/偶数个 入度为0的点的方案数以及他们和外部连边的总方案数。

所以我们只需要设 \(g[s]/h[s]\) 分别表示 集合 \(s\)的导出子图 内有 奇数/偶数 个入度为0的强联通分量的方案数。设 \(f[s]\) 表示 \(s\) 集合导出子图强联通的方案数,\(cnt(S,T)\) 表示 \(S\) 到 \(T\) 内的边数。

\(f\)的转移和 DAG 计数类似。g,h的转移都很简单:

\[f[S]=2^{cnt(S,S)}-\sum_{T\subseteq S , T \neq \emptyset}(g[T]-h[T])*2^{cnt(S-T,S-T)+cnt(T,S-T)}
\]

\[g[S]=\sum_{T\subseteq S,T\neq \emptyset} f[T]*h[S-T]
\]

\[h[S]=\sum_{T\subseteq S,T\neq \emptyset} f[T]*g[S-T]
\]

发现好像 \(g\),\(h\) 和 \(f\) 会互相转移。

分析一下,由于 \(g[0]=0\) 所以 \(h\) 的转移不受影响。然后 \(g[S]\) 的转移需要加上 \(f[S]\) , \(f[S]\) 的转移似乎也需要 \(g\) 来支持。

但是注意到我们算的东西是不强联通的,因此整个一大坨就是一个强联通分量的话是不能被算入 \(f\) 的,也就是说 \(g[S]\) 要靠 \(f[S]\) 来进行转移的部分恰好不能贡献到 \(f[S]\) 里面去,所以我们先算出 \(g\),\(h\) ,然后直接按照原来的方法算 \(f\) ,算完之后载把 \(f[S]\) 加入 \(g[S]\) 就可以了。

code:

#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXN=225;
const int N=16;
const int MAXS=1<<(N-1);
const int mod=1e9+7;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template<typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template<typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template<typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
inline int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
inline int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
int f[MAXS],g[MAXS],h[MAXS];
bitset<MAXN> in[MAXS],out[MAXS];
inline int Cnt(int S,int T){return (out[S]&in[T]).count();}
int bits[MAXN],cnt[MAXS];int n,m; int main()
{
init(n),init(m);bits[0]=1;
for(int i=1;i<MAXN;++i) bits[i]=Sum(bits[i-1],bits[i-1]);
const int UP=1<<n;
for(int i=1;i<=m;++i) {
int u,v;init(u),init(v);
for(int s=1;s<UP;++s) {
if(s&bits[u-1]) out[s].set(i);
if(s&bits[v-1]) in [s].set(i);
}
}f[0]=0,g[0]=0,h[0]=1;// g: odd / h: even for(int s=1;s<UP;++s) {
cnt[s]=cnt[s>>1]+(s&1);f[s]=0;int lb=s&(-s);
for(int t=s;t;t=(t-1)&s) if(t&lb) Inc(g[s],(ll)f[t]*h[s^t]%mod),Inc(h[s],(ll)f[t]*g[s^t]%mod);
for(int t=s;t;t=(t-1)&s) Inc(f[s],(ll)Dif(g[t],h[t])*bits[Cnt(t,s^t)+Cnt(s^t,s^t)]%mod);
f[s]=Dif(bits[Cnt(s,s)],f[s]);
Inc(g[s],f[s]);
}
printf("%d\n",f[UP-1]);
return 0;
}

【UOJ#37】 [清华集训2014] 主旋律的更多相关文章

  1. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  2. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  3. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  4. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  5. BZOJ3812 清华集训2014 主旋律

    直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...

  6. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  7. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  8. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  9. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

随机推荐

  1. 【Python开发】使用pyplot模块绘图

    快速绘图 使用pyplot模块绘图¶ matplotlib的pyplot模块提供了和MATLAB类似的绘图API,方便用户快速绘制二维图表.我们先看一个简单的例子: 05-matplotlib/mat ...

  2. Akka简介与Actor模型(一)

    前言...... Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 ...

  3. MFC之MessageBox、AfxMessageBox用法

    在软件中我们经常会弹出个小窗口,给一点点提示.这就会用到消息对话框. 在Win32 API程序中只有MessageBox这一种用法. 而在MFC中就有三各方法: 1.调用API中的MessageBox ...

  4. PTA(Advanced Level)1065.A+B and C

    Given three integers A, B and C in [−263,263], you are supposed to tell whether A+B>C. Input Spec ...

  5. 【DP 好题】Kick Start 2019 Round C Catch Some

    题目链接 题目大意 在一条数轴上住着 $N$ 条狗和一个动物研究者 Bundle.Bundle 的坐标是 0,狗的坐标都是正整数,可能有多条狗住在同一个位置.每条狗都有一个颜色.Bundle 需要观测 ...

  6. Codeforces 1209D Cow and Snacks

    题目大意 有 $n$ 个不同的糖果,从 $1$ 到 $n$ 编号.有 $k$ 个客人.要用糖果招待客人. 对于每个客人,这些糖果中恰有两个是其最爱.第 $i$ 个客人最爱的糖果编号是 $x_i$ 和 ...

  7. 【pytorch】学习笔记(三)-激励函数

    [pytorch]学习笔记-激励函数 学习自:莫烦python 什么是激励函数 一句话概括 Activation: 就是让神经网络可以描述非线性问题的步骤, 是神经网络变得更强大 1.激活函数是用来加 ...

  8. 06: zabbix常见面试题

    1.1 zabbix架构 1.zabbix理论 1)Zabbix是一个企业级的.开源的.分布式的监控套件,Zabbix可以监控网络和服务的监控状况. 2)Zabbix利用灵活的告警机制,允许用户对事件 ...

  9. 数据结构之单链表的实现-java

    一.单链表基本概念 单链表是一种链式存取的数据结构,用一组地址任意的存储单元(一般是非连续存储单元)存放线性表中的数据元素.链表中的数据是以结点来表示的,每个结点的构成:元素data + 指针next ...

  10. Transparency Tutorial with C# - Part 3

    Download image fade demo - 4 Kb Download image fade source project- 7 Kb Download image fade images ...