算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)
在描述算法复杂度时,经常用到
o(1), o(n), o(logn), o(nlogn)
来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:
这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
- 比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
- 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
- 再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
- O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
- O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
- 总之,
在平均情况下,快速排序最快;
在最好情况下,插入排序和起泡排序最快;
在最坏情况下,堆排序和归并排序最快。
算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)的更多相关文章
- C#中常用的排序算法的时间复杂度和空间复杂度
常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...
- 算法的时间复杂度(大O表示法)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”. 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性 ...
- 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度
所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...
- 小小知识点(六)——算法中的P问题、NP问题、NP完全问题和NP难问题
转自CSDN默一鸣 https://blog.csdn.net/yimingsilence/article/details/80004032 在讨论算法的时候,常常会说到这个问题的求解是个P类问题,或 ...
- 问题 1690: 算法4-7:KMP算法中的模式串移动数组
题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...
- php算法基础----时间复杂度和空间复杂度
算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...
- 关于算法的时间复杂度O(f(n))
(一)算法时间复杂度定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n ...
- KMP算法的时间复杂度与next数组分析
一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...
- 算法的时间复杂度O
一.时间复杂度 在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作 ...
随机推荐
- git统计提交次数
git log --since="Oct 27 9:16:10 2017 +0800" --pretty=oneline | wc -l
- [Linux] 020 RPM 包的命名原则与其依赖性
1. RPM 包命名原则 例如:httpd-2.2.15-15.e16.centos.1.i686.rpm 字符 释义 httpd 软件包名 2.2.15 软件版本 15 软件发布的次数 e16.ce ...
- jvm 这我就能会了 擦
最近老有人问jvm,恕我直言,完蛋了,不会,慢慢学吧,开始第一个学习,后续补充,走起... 我看的他的https://www.cnblogs.com/dingyingsi/p/3760447.html ...
- MyEclipse停止自带插件的启动
MyEclipse启动时因为自身带有很多的插件,所以在启动时运行的速度特别慢,所以可以选择一下启动时的插件,将不使用的插件选择在MyEclipse启动时不起动. 步骤如下: windows->p ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- spark性能调优06-数据倾斜处理
1.数据倾斜 1.1 数据倾斜的现象 现象一:大部分的task都能快速执行完,剩下几个task执行非常慢 现象二:大部分的task都能快速执行完,但总是执行到某个task时就会报OOM,JVM out ...
- jquery的扩展,及编辑插件的书写格式
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 对VS2019进行32位汇编环境配置
1.库文件(很重要) 用我这一份就行:https://www.lanzous.com/i6364hg 2.VS依赖库 打开VS2019,选择桌面向导 配置项目时,选择新项目. 选择生成依赖项 选中ma ...
- ApacheHttpServer出现启动报错:the requested operation has failed解决办法
转自:https://www.jb51.net/article/21004.htm 原因一:80端口占用 例如IIS,另外就是迅雷.我的apache服务器就是被迅雷害得无法启用! 原因二:软件冲突 装 ...
- 机器学习-线性回归补充-R^
线性回归算法在选自变量会遇到两个问题:一是去掉多重共线性干扰,二是选择最优自变量组合. 线性回归步骤 1.选择自变量 注意点 去掉多重共线性干扰,选择最优自变量组合.这里需要理解决定系数:R^.它是理 ...