算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)
在描述算法复杂度时,经常用到
o(1), o(n), o(logn), o(nlogn)
来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:
这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
- 比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
- 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
- 再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
- O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
- O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
- 总之,
在平均情况下,快速排序最快;
在最好情况下,插入排序和起泡排序最快;
在最坏情况下,堆排序和归并排序最快。
算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)的更多相关文章
- C#中常用的排序算法的时间复杂度和空间复杂度
常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...
- 算法的时间复杂度(大O表示法)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”. 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性 ...
- 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度
所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...
- 小小知识点(六)——算法中的P问题、NP问题、NP完全问题和NP难问题
转自CSDN默一鸣 https://blog.csdn.net/yimingsilence/article/details/80004032 在讨论算法的时候,常常会说到这个问题的求解是个P类问题,或 ...
- 问题 1690: 算法4-7:KMP算法中的模式串移动数组
题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...
- php算法基础----时间复杂度和空间复杂度
算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...
- 关于算法的时间复杂度O(f(n))
(一)算法时间复杂度定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n ...
- KMP算法的时间复杂度与next数组分析
一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...
- 算法的时间复杂度O
一.时间复杂度 在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作 ...
随机推荐
- HTML5基本标签<搬运>
HTML语言基本标签: 创建一个HTML文档<html></html> 设置文档标题以及其他不在WEB网页上显示的信息<head></head> 设置文 ...
- Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)
Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...
- Linux grep常用命令
在一个文件中同时查找多个字符串: 并集语法: grep -e 'pattern1 -e 'pattern2 file 或集语法: 1.grep -E 'pattern1|pattern2' file ...
- Leetcode Lect3 时间复杂度/空间复杂度
时间复杂度 复杂度 可能对应的算法 备注 O(1) 位运算 常数级复杂度,一般面试中不会有 O(logn) 二分法,倍增法,快速幂算法,辗转相除法 O(n) 枚举法,双指针算法,单调栈算法,KMP ...
- jquery实现按键增加删除css属性(hide)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Service vs provider vs factory 转自:http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory
请看此链接:http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- mysql安装 demo [linux centos7] [5.7.26]
MySQL 安装配置 https://www.runoob.com/linux/mysql-install-setup.html =================================== ...
- mongodb 索引分类
一. 普通索引篇 1.创建索引 创建索引:db.person.ensureIndex({"age":1}).这里我们使用了ensureIndex在age上建立了索引.“1”:表示按 ...
- 02.自定义banner、全局配置文件、@Value获取自定义配置、@ConfigurationProperties、profiles配置
自定义banner src/main/resource 下新建 banner.txt,字符复制到banner.txt 中 生成字符网站推荐: http://patorjk.com/software/t ...