Solution:

​ 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数。

假设新加一个数 \(i+1\) 那么会有:

\[f(i,j)\rightarrow f(i + 1, j + 1)\\
f(i, j)\times i\rightarrow f(i + 1, j)
\]

​ 即将 \(i+1\) 放在那哪个位置,会对后面产生贡献,综合一下,\(f(i, j)\) 就是第一类斯特林数 \(i \brack j\) 。

​ 然后再考虑后缀,不难发现,对于长度为 \(n\) 的排列,前缀为自己的一定是在 \(n\) 以及 \(n\) 的左边,后缀为自己的一定在 \(n\) 及 \(n\) 的右边,于是可以枚举 \(n\) 的位置 \(i\),生成一个合法的方案为:先从 \(n-1\) 个数中选 \(i-1\) 个数,然后放在 \(n\) 两边,再将他们(两边互不干扰)分别分成 \(a-1, b-1\) 个环。

\[ans=\sum_{i=1}^n{~n - 1~\choose i - 1} {i - 1\brack a - 1}{n - i\brack b - 1}
\]

​ 考虑组合意义,分成两个部分,环是可以拼在一起的,于是可以改变操作的顺序,即先分环,再分边。

\[ans = {n - 1\brack a + b - 2}{a + b - 2\choose a - 1}
\]

​ 第一类斯特林数 \(n\brack i\) 的生成函数为:

\[F_n(x) =\prod_{i\geq0}^{n-1}(x + i)
\]

​ 用分治卷积快速求出一行第一类斯特林数即可。

Code

#include <vector>
#include <cmath>
#include <cstdio>
#include <cassert>
#include <cstring>
#include <iostream>
#include <algorithm> typedef long long LL;
typedef unsigned long long uLL; #define fir first
#define sec second
#define SZ(x) (int)x.size()
#define MP(x, y) std::make_pair(x, y)
#define PB(x) push_back(x)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO\n")
#define rep(i, a, b) for (register int i = (a), i##end = (b); (i) <= i##end; ++ (i))
#define drep(i, a, b) for (register int i = (a), i##end = (b); (i) >= i##end; -- (i))
#define REP(i, a, b) for (register int i = (a), i##end = (b); (i) < i##end; ++ (i)) inline int read() {
register int x = 0; register int f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c xor 48), isdigit(c = getchar()));
return x * f;
}
template<class T> inline void write(T x) {
static char stk[30]; static int top = 0;
if (x < 0) { x = -x, putchar('-'); }
while (stk[++top] = x % 10 xor 48, x /= 10, x);
while (putchar(stk[top--]), top);
}
template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; } using namespace std; const int MOD = 998244353;
const int maxn = 1e5 + 2; LL qpow(LL a, LL b)
{
LL ans = 1;
while (b)
{
if (b & 1)
ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
} int Inv(LL x)
{
return qpow(x, MOD - 2);
} namespace Poly
{
const int G = 3; int rev[maxn * 2], omega[maxn * 2], invomega[maxn * 2]; void init(int lim, int lg2)
{
REP (i, 0, lim) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (lg2 - 1);
omega[0] = invomega[0] = 1;
omega[1] = qpow(G, (MOD - 1) / lim);
invomega[1] = Inv(omega[1]);
REP (i, 2, lim)
{
omega[i] = 1ll * omega[i - 1] * omega[1] % MOD;
invomega[i] = 1ll * invomega[i - 1] * invomega[1] % MOD;
}
} void NTT(int a[], int lim, int omega[])
{
REP (i, 0, lim) if (rev[i] > i) swap(a[i], a[rev[i]]);
for (register int len = 2; len <= lim; len <<= 1)
{
register int m = len >> 1;
for (register int *p = a; p != a + lim; p += len)
for (register int i = 0; i < m; ++i)
{
register int t = 1ll * omega[lim / len * i] * p[i + m] % MOD;
p[i + m] = (1ll * p[i] - t + MOD) % MOD;
p[i] = (1ll * p[i] + t) % MOD;
}
}
} void DFT(int a[], int lim)
{ NTT(a, lim, omega); } void IDFT(int a[], int lim)
{
NTT(a, lim, invomega);
int inv = Inv(lim);
REP (i, 0, lim) a[i] = 1ll * a[i] * inv % MOD;
} void Mul(const vector<int> a, const vector<int> b, vector<int> &c)
{
static int A[maxn * 2], B[2 * maxn];
int n = a.size(), m = b.size();
int lg2 = log2(n + m) + 1;
int lim = 1 << lg2;
copy(a.begin(), a.end(), A);
fill(A + n, A + lim, 0);
copy(b.begin(), b.end(), B);
fill(B + m, B + lim, 0);
init(lim, lg2);
DFT(A, lim);
DFT(B, lim);
REP (i, 0, lim) A[i] = 1ll * A[i] * B[i] % MOD;
IDFT(A, lim);
c.resize(n + m - 1);
copy(A, A + n + m - 1, c.begin());
}
} vector<int> s[maxn * 4]; void solve(int o, int l, int r)
{
if (l == r)
{
s[o].push_back(l);
s[o].push_back(1);
return;
}
int mid = (l + r) >> 1;
solve(o << 1, l, mid);
solve(o << 1 | 1, mid + 1, r);
Poly::Mul(s[o << 1], s[o << 1 | 1], s[o]);
} int Stirling1(int n, int m)
{
if (m == 0) return n == 0;
if (m < 0 || m > n) return 0;
if (n < 0) return 0;
solve(1, 0, n - 1);
return s[1][m];
} int n, a, b; void Input()
{
n = read(), a = read(), b = read();
} int fac[maxn * 2]; void Init(int N)
{
fac[0] = 1;
rep (i, 1, N) fac[i] = 1ll * fac[i - 1] * i % MOD;
} int combine(int n, int m)
{
if (n < 0 || m < 0 || n < m) return 0;
return 1ll * fac[n] * Inv(fac[m]) % MOD * Inv(fac[n - m]) % MOD;
} void Solve()
{
cout << 1ll * Stirling1(n - 1, a + b - 2) * combine(a + b - 2, a - 1) % MOD << endl;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif Input(); Init(n * 2); Solve(); return 0;
}

[CF960G]Bandit Blues(第一类斯特林数+分治卷积)的更多相关文章

  1. CF960G Bandit Blues 第一类斯特林数+分治+FFT

    题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大 ...

  2. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  3. CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】

    题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...

  4. CF960G-Bandit Blues【第一类斯特林数,分治,NTT】

    正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \( ...

  5. Codeforces960G Bandit Blues 【斯特林数】【FFT】

    题目大意: 求满足比之前的任何数小的有A个,比之后的任何数小的有B个的长度为n的排列个数. 题目分析: 首先写出递推式,设s(n,k)表示长度为n的排列,比之前的数小的数有k个. 我们假设新加入的数为 ...

  6. Codeforces 715E - Complete the Permutations(第一类斯特林数)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...

  7. CF960G Bandit Blues 分治+NTT(第一类斯特林数)

    $ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...

  8. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  9. CF960G Bandit Blues(第一类斯特林数)

    传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i- ...

随机推荐

  1. window.onload和document.ready的区别

    window.onload和document.ready虽然两个方法的运行效果都一样,但他们之间是存在着区别的: 一.从执行的时间 window.onload在dom文档结构加载完毕以后就可以执行,不 ...

  2. Rsync安装部署

    Rsync安装部署 1.Rsync  简介 Rsync  是一款开源的.快速的 多功能的 可以实现全量以及增量的本地或者是远程的数据同步备份的优秀工具,并且可以不进行改变原有的数据属性信息,实现数据的 ...

  3. Spring Boot 全局排除 spring-boot-starter-logging 依赖

    https://blog.csdn.net/u013314786/article/details/90412733 项目里使用了log4j2做日志处理,要排除掉Spring Boot 很多jar里边默 ...

  4. docker安装各种坑

    今天记录一下之前安装docker遇到的各种坑. 我们从http://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/这个网站下载. 下 ...

  5. python基础--局部变量与全局变量

    #全局变量作用于全局或整个程序中,程序执行完毕后销毁,局部变量作用在当前函数中,调用函数执行完毕及销毁 #如果函数的内容无global关键字,优先读取同名局部变量,如果没有同名局部变量,只能读取同名全 ...

  6. 21.Nodejs基础知识(下)——2019年12月16日

    2019年10月04日16:56:23 7. 模块 7.1 暴露一个类,字段 var bar = require("./bar.js"); var msg = "你好&q ...

  7. 035:DTL常用过滤器(4)

    join过滤器: 类似与 Python 中的 join ,将列表/元组/字符串用指定的字符进行拼接.示例代码如下: {{ value|join:"/" }} 如果 value 是等 ...

  8. java 构造方法中super()的作用?

    手贱百度了一下 :java里面自定义类的有参构造方法为什么不用super() 举个例子: class Father { Father(){print ('father');}; } class Son ...

  9. Python3解leetcode Subtree of Another Tree

    问题描述: Given two non-empty binary trees s and t, check whether tree t has exactly the same structure ...

  10. 【LOMBOK】能引入 @Slf4j 注解,不能识别 log 的解决方法

    问题: 在pom.xml中加入引入了lombok的依赖,可以引用@Slf4j注解不能识别log 如:注:上面一篇博客,已经说明lombok的安装了,但是用的时候还有点问题. 1).把lombok.ja ...