题目

你真的认为选课是那么容易的事吗?HYSBZ的ZY同志告诉你,原来选课也会让人产生一种想要回到火星的感觉。假设你的一周有n天,那么ZY编写的选课系统就会给你n堂课。但是该系统不允许在星期i和星期i+1的时候选第i堂课,也不允许你在星期n和星期一的时候选第n堂课。然后连你自己也搞不清哪种选课方案合法,哪种选课不合法了。你只想知道,你到底有多少种合法的选课方案。

分析

声明一下,参考了题解。

我们定义\(W_k\)表示至少有k节课选错的方案数,

求出这个,用容斥原理就很容易求出正确选课方案数量。

那怎么求\(W_k\)呢?

现在总共 n 堂课分别记为 1,2,...n,它们可放的天数可以表示为(1,2)(2,3)(3,4)...(n,1)现在我们把括号去掉即得到一个数列 1,2,2,3,3,4,....n,1,现在我们从里面取出 K 个数,分别表示 k 堂课所在的天数,现在只要求出满足这个条件的取法数就可以了。

但是,我们不能再同一天选两节课,那么第\(i*2-1和第i*2\)个数是不可以同时取的,

接着,我们不能重复取一节课,那么第\(i*2和第i*2+1\)个数是不可以同时取的(当然,最后一个“1”和最前面的“1”也是不可以同时取的)。

也就是说,对于一个环,求从其中选取k个不相邻顶点得方案数:\(C_{2n-k-1}^{k-1}*\dfrac{2n}{k}\)

证明:对于任意一个顶点A,先取A,然后再从不和A相邻的n-3个其他顶点中取k-1个不相邻顶点,显然可得到符合定理要求的组合,这个组合的个数为C((n-3)-(k-1)+1,k-1)=C(n-k-1,k-1)。一共有n个顶点,而且在每个组合中有k个元素,即可完成证明。

然后其余的随便选,

所以\(W_{k}=C_{2n-k-1}^{k-1}*\dfrac{2n}{k}*(n-k)!\)

THEN?容斥。

据说有种更强大的方法:这道提示有递推式滴!!!



但方法实在是太神奇了,根本就搞不懂。+_+

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
const long long mo=1000000007;
using namespace std;
long long jc[210000],ans,n,ny[210000],nn[210000];
long long mi(long long x,long long y)
{
long long sum=1;
while(y)
{
if(y&1) sum=sum*x%mo;
x=x*x%mo;
y/=2;
}
return sum;
}
long long C(long long m,long long n)
{
return jc[m]*nn[m-n]%mo*nn[n]%mo;
}
long long W(long long k)
{
return n*2*ny[n*2-k]%mo*C(n*2-k,k)%mo*jc[n-k]%mo;
}
int main()
{
for(long long i=0;i<=200005;i++)
ny[i]=mi(i,mo-2);
jc[0]=1;
nn[0]=1;
for(long long i=1;i<=200005;i++)
{
jc[i]=jc[i-1]*i%mo;
nn[i]=mi(jc[i],mo-2);
}
while(scanf("%lld",&n)!=EOF)
{
if(n==1)
{
printf("0\n");
continue;
}
ans=jc[n];
for(long long i=1;i<=n;i++)
{
if(i%2)
ans=(ans-W(i)+mo)%mo;
else
ans=(ans+W(i))%mo;
}
printf("%lld\n",ans);
}
}

【NOIP2013模拟联考6】选课的更多相关文章

  1. JZOJ 3493. 【NOIP2013模拟联考13】三角形

    3493. [NOIP2013模拟联考13]三角形(triangle) (File IO): input:triangle.in output:triangle.out Time Limits: 10 ...

  2. JZOJ 3487. 【NOIP2013模拟联考11】剑与魔法(dragons)

    3487. [NOIP2013模拟联考11]剑与魔法(dragons) (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  De ...

  3. JZOJ 3470. 【NOIP2013模拟联考8】最短路(path)

    470. [NOIP2013模拟联考8]最短路(path) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  4. JZOJ 3463. 【NOIP2013模拟联考5】军训

    3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms  Memory Limits: 262144 KB  Deta ...

  5. JZOJ 3462. 【NOIP2013模拟联考5】休息(rest)

    3462. [NOIP2013模拟联考5]休息(rest) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  6. JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)

    3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Det ...

  7. 【NOIP2013模拟联考7】OSU

    [NOIP2013模拟联考7]OSU 描述 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分, ...

  8. JZOJ【NOIP2013模拟联考14】隐藏指令

    JZOJ[NOIP2013模拟联考14]隐藏指令 题目 Description 在d维欧几里得空间中,指令是一个长度为2N的串.串的每一个元素为d个正交基的方向及反方向之一.例如,d = 1时(数轴) ...

  9. [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)

    Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...

随机推荐

  1. 关于maven项目 启动页面报错 The type java.io.ObjectInputStream cannot be resolved.

    这种情况,要修改jdk版本,默认jdk选择 jdk不选jre windows---->perference---->java----->installes jres-----> ...

  2. 【工具使用】kali 安装后要做的事情

    日期:2019-07-17 10:43:40 介绍:修改分辨率.修改时区.修改源 0x01. 修改分辨率 kali 在安装完成之后,分辨率过低,需要修改分辨率.  然后依次选择 [settings] ...

  3. sql 、linq、lambda 查询语句

    http://www.cnblogs.com/lei2007/archive/2011/07/21/2113161.html

  4. oracle ogg 单实例单向简单搭建测试(oracle-oracle)

    昨天突然接到消息说有一个线上的ogg出现了问题,看是否能修复,由于ogg以前玩的少,所以就加急搞了个测试环境,练习了一把 环境 db1,db2(单实例)ip: 1*,1*sid: orcl,ogg1o ...

  5. Golang基础(1):Go数据类型和变量

    一:Go数据类型 1.1 Go语言按照分类有以下几种数据类型 布尔型 布尔型的是一个常量true或者false 数字类型 整型int和浮点型 float32, float64 字符串类型 字符串就是一 ...

  6. 添加linux中svn的用户和密码

    1:首先找到svn路径 find / -iname "svn" 一般找到svn路径之后就可以找到配置文件位置啦 svn/svnrepos/jgcp/conf 2:进入目录之后修改a ...

  7. python 并发编程 多进程 目录

    python multiprocessing模块 介绍 python 开启进程两种方法 python 并发编程 查看进程的id pid与父进程id ppid python 并发编程 多进程 Proce ...

  8. “AIIA”杯-国家电网-电力专业领域词汇挖掘

    十一之前一直在做“电力领域的词典构建”任务,今天也去聆听了前五支队伍的报告,现结合这段时间来的项目经历,写一下自己的若干心得. 电力领域的词典构建——方法1(非监督学习) 在电力领域词典构建心得1.0 ...

  9. 关于Maven的安装和配置

    1.Maven的介绍 1.Maven是一个项目管理工具(项目对象模型POM) 2.Maven可以管理项目中的jar包依赖 3.Maven的中央仓库地址 http://mvnrepository.com ...

  10. mysql分组统计后将结果顺序排列(union实现)

    工作中用到统计12月份通话记录,统计号码拨打次数,但是问题出在一个号码可以拨打多次,每次可能接通也可能不接通,如果用主叫号码caller字段group by分组后count(*)统计数目,这样会导致不 ...