[UVa1057] Routing
问题描述
As more and more transactions between companies and people are being carried out electronically over
the Internet, secure communications have become an important concern. The Internet Cryptographic
Protocol Company (ICPC) specializes in secure business-to-business transactions carried out over a
network. The system developed by ICPC is peculiar in the way it is deployed in the network.
A network like the Internet can be modeled as a directed graph: nodes represent machines or routers,
and edges correspond to direct connections, where data can be transmitted along the direction of an
edge. For two nodes to communicate, they have to transmit their data along directed paths from the
first node to the second, and from the second node to the first.
Figure: An arrow from node X to node Y means that it is possible to connect to node Y from node X
but not vice versa. If software is installed on nodes 1, 2, 7, and 8, then communication is possible
between node 1 and node 2. Other configurations are also possible but this is the minimum cost
option. This figure corresponds to the first sample input.
To perform a secure transaction, ICPC’s system requires the installation of their software not only
on the two endnodes that want to communicate, but also on all intermediate nodes on the two paths
connecting the end-nodes. Since ICPC charges customers according to how many copies of their software
have to be installed, it would be interesting to have a program that for any network and end-node pair
finds the cheapest way to connect the nodes.
输入格式
The input consists of several descriptions of networks. The first line of each description contains two
integers N and M (2 ≤ N ≤ 100), the number of nodes and edges in the network, respectively.
The nodes in the network are labeled 1, 2, . . . , N, where nodes 1 and 2 are the ones that want to
communicate. The first line of the description is followed by M lines containing two integers X and Y
(1 ≤ X, Y ≤ N), denoting that there is a directed edge from X to Y in the network.
The last description is followed by a line containing two zeroes.
输出格式
For each network description in the input, display its number in the sequence of descriptions. Then
display the minimum number of nodes on which the software has to be installed, such that there is
a directed path from node 1 to node 2 using only the nodes with the software, and also a path from
node 2 to node 1 with the same property. (Note that a node can be on both paths but a path need not
contain all the nodes.) The count should include nodes 1 and 2.
If node 1 and 2 cannot communicate, display ‘IMPOSSIBLE’ instead.
Follow the format in the sample given below, and display a blank line after each test case.
样例输入
8 12
1 3
3 4
4 2
2 5
5 6
6 1
1 7
7 1
8 7
7 8
8 2
2 8
2 1
1 2
0 0
样例输出
Network 1
Minimum number of nodes = 4
Network 2
IMPOSSIBLE
题目大意
n 个点m条边, 从点1走到点2再走回去, 求最少经过多少个不同的点. (n<=100)
解析
可以把经过1和2的环拆成从1出发到2的路径和从2到1的路径。如果我们建立原图的反图,那么就是求正图上从1出发到2的路径和反图上从1出发到2的路径最少经过的不同的点。这个可以利用动态规划加最短路的思想。设状态\(f[i][j]\)表示正图上到i、反图上到j经过的最少的不同点个数。转移时用Dijkstra最短路的形式,在正图和反图上分别沿着当前点的边扩展一次,如果更新就放进队列当中。有如下转移方程:
f[v][u2]=f[u1][u2]+[u2!=v],((u1,v)\in E1)
\]
但是,我们会发现,某些情况下\(f[i][j]\)的值会比实际情况多。对于这种有偏差的情况,我们可以换一种转移的方式。通过观察,发现这种情况下,\(f[i][j]\)是由\(f[j][i]\)多走j到i的最短路得到的。因此,我们有
\]
\(dis[i][j]\)表示i到j的最短路,可用Floyd求出。注意,如果不是特殊情况,\(f[u1][u2]+dis[u1][u2]-1\)会得到错误的答案。所以要去最小值。
代码
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#define N 102
#define M 10002
using namespace std;
const int inf=0x3f3f3f3f;
struct node{
int x1,x2,d;
node(int _x1,int _x2,int _d){
x1=_x1;x2=_x2;d=_d;
}
};
bool operator < (node a,node b) { return a.d>b.d; }
int head1[N],ver1[M*2],nxt1[M*2],l1;
int head2[N],ver2[M*2],nxt2[M*2],l2;
int t,n,m,i,j,k,f[N][N],dis[N][N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
void insert1(int x,int y)
{
l1++;
ver1[l1]=y;
nxt1[l1]=head1[x];
head1[x]=l1;
}
void insert2(int x,int y)
{
l2++;
ver2[l2]=y;
nxt2[l2]=head2[x];
head2[x]=l2;
}
void Dijkstra()
{
priority_queue<node> q;
memset(f,0x3f,sizeof(f));
f[1][1]=1;
q.push(node(1,1,1));
while(!q.empty()){
int x1=q.top().x1,x2=q.top().x2,d=q.top().d;
q.pop();
if(d!=f[x1][x2]) continue;
for(int i=head1[x1];i;i=nxt1[i]){
int y=ver1[i],w=(x2!=y);
if(d+w<f[y][x2]){
f[y][x2]=d+w;
q.push(node(y,x2,f[y][x2]));
}
}
for(int i=head2[x2];i;i=nxt2[i]){
int y=ver2[i],w=(x1!=y);
if(d+w<f[x1][y]){
f[x1][y]=d+w;
q.push(node(x1,y,f[x1][y]));
}
}
if(x1!=x2&&d+dis[x1][x2]-1<f[x2][x1]){
f[x2][x1]=d+dis[x1][x2]-1;
q.push(node(x2,x1,f[x2][x1]));
}
}
}
int main()
{
while(1){
n=read();m=read();
if(n==0&&m==0) break;
memset(head1,0,sizeof(head1));
memset(head2,0,sizeof(head2));
memset(dis,0x3f,sizeof(dis));
l1=l2=0;
for(i=1;i<=m;i++){
int u=read(),v=read();
insert1(u,v);
insert2(v,u);
dis[u][v]=1;
}
for(k=1;k<=n;k++){
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
if(dis[i][j]>dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j];
}
}
}
printf("Network %d\n",++t);
if(dis[1][2]>=inf||dis[2][1]>=inf){
puts("Impossible");
puts("");
continue;
}
Dijkstra();
printf("Minimum number of nodes = %d\n",f[2][2]);
puts("");
}
return 0;
}
[UVa1057] Routing的更多相关文章
- 【UVA1057】Routing
[UVA1057]Routing 题面 洛谷 题解 有一个比较好想的dp就是\(f_{i,j}\)表示第一个点在\(i\),第二个点在\(j\)的最小点数,但是直接搞不好转移. 考虑建出反图,那么\( ...
- 【ZJOI2017 Round1练习&UVA1057】D6T1 Routing(DP,SPFA)
题意:给你一个有向图, 并指定起点和终点. 问要从起点走向终点, 再从终点走向起点, 最少需要走过多少不同的节点. 对于 100%的数据, 有 N<=100, M<=min(1000,N* ...
- ASP.NET路由[ASP.NET Routing]
ASP.NET路由[ASP.NET Routing] ASP.NET路由允许你在使用URL时不必匹配到网站中具体的文件,因为这个URL不必匹配到一个文件,你使用了描述用户行为且更容易被用户理解的URL ...
- 解读ASP.NET 5 & MVC6系列(12):基于Lamda表达式的强类型Routing实现
前面的深入理解Routing章节,我们讲到了在MVC中,除了使用默认的ASP.NET 5的路由注册方式,还可以使用基于Attribute的特性(Route和HttpXXX系列方法)来定义.本章,我们将 ...
- 解读ASP.NET 5 & MVC6系列(11):Routing路由
新版Routing功能介绍 在ASP.NET 5和MVC6中,Routing功能被全部重写了,虽然用法有些类似,但和之前的Routing原理完全不太一样了,该Routing框架不仅可以支持MVC和We ...
- [ASP.NET MVC 小牛之路]07 - URL Routing
我们知道在ASP.NET Web Forms中,一个URL请求往往对应一个aspx页面,一个aspx页面就是一个物理文件,它包含对请求的处理. 而在ASP.NET MVC中,一个URL请求是由对应的一 ...
- ASP.NET MVC Routing学习笔记(一)
Routing在ASP.NET MVC中是非常核心的技术,属于ASP.NET MVC几大核心技术之一,在使用Routing之前,得先引入System.Web.Routing,但其实不用这么麻烦,因为在 ...
- Routing 功能概述 - 每天5分钟玩转 OpenStack(98)
路由服务(Routing)提供跨 subnet 互联互通功能. 例如前面我们搭建了实验环境: cirros-vm1 172.16.100.3 vlan100 cirros-vm ...
- .NET/ASP.NET Routing路由(深入解析路由系统架构原理)
阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4 ...
随机推荐
- 测开之路一百三十三:实现sql函数封装
连接数据库的频率很高,所以把数据库操作封装起来 函数封装: def make_dicts(cursor, row): """ 将游标获取的Tuple根据数据库列表转换为d ...
- 2018.03.26 Python-Pandas 字符串常用方法
import numpy as np import pandas as pd 1 #字符串常用方法 - strip s = pd.Series([' jack ','jill',' jease ',' ...
- 四种方法 恢复损坏的Excel文档
四种方法 恢复损坏的Excel文档 打开一个以前编辑好的Excel工作簿,却发现内容混乱,无法继续进行编辑,而且还不能够进行打印.这是很多朋友在处理Excel文件时都可能会遇到的一个问题,面对这种情况 ...
- C语言实现单链表
大二学习数据结构和算法啦,因为之前用Java语言实现过,所以理解起来还是比较轻松,就是理解指针与结构体的运用.废话不多说,上代码! 初始化 typedef struct Node { int data ...
- Go语言入门篇-使用Beego构建完整web应用
使用Beego构建完整web应用 一.GO简介(Beego应用go编写) 1.为什么用GO (1).语法简单 (2).简洁的并发 (3).开发和执行效率快(编译型语言) 2.GO语言环境 下载go & ...
- Web Services调用存储过程简单实例
转:http://www.cnblogs.com/jasenkin/archive/2010/03/02/1676634.html Web Services 主要利用 HTTP 和 SOAP 协议使商 ...
- [转帖]探秘华为(一):华为和H3C(华三)的爱恨情仇史!
探秘华为(一):华为和H3C(华三)的爱恨情仇史! https://baijiahao.baidu.com/s?id=1620703498823290828&wfr=spider&fo ...
- 几个 BeanUtils 中的坑,千万别踩!
背景 最近项目中在和第三方进行联调一个接口,我们这边发送http请求给对方,然后接收对方的回应,代码都是老代码. 根据注释,对方的SDK中写好的Request类有一个无法序列化的bug,所以这边重新写 ...
- Luogu P1864 [NOI2009]二叉查找树
题目 \(v\)表示权值,\(F\)表示频率. 首先我们显然可以把这个权值离散化. 然后我们想一下,这个东西它是一棵树对吧,但是我们改变权值会引起其树形态的改变,这样很不好做,所以我们考虑把它转化为序 ...
- tableview(model base)
该tableview控件的用法: 1.原理: 数据存放在“表”对象中,而将这个对象关联到tableview控件之后,将实现在UI中展示出来. class Query_Students : public ...