[UVa1057] Routing
问题描述
As more and more transactions between companies and people are being carried out electronically over
the Internet, secure communications have become an important concern. The Internet Cryptographic
Protocol Company (ICPC) specializes in secure business-to-business transactions carried out over a
network. The system developed by ICPC is peculiar in the way it is deployed in the network.
A network like the Internet can be modeled as a directed graph: nodes represent machines or routers,
and edges correspond to direct connections, where data can be transmitted along the direction of an
edge. For two nodes to communicate, they have to transmit their data along directed paths from the
first node to the second, and from the second node to the first.
Figure: An arrow from node X to node Y means that it is possible to connect to node Y from node X
but not vice versa. If software is installed on nodes 1, 2, 7, and 8, then communication is possible
between node 1 and node 2. Other configurations are also possible but this is the minimum cost
option. This figure corresponds to the first sample input.
To perform a secure transaction, ICPC’s system requires the installation of their software not only
on the two endnodes that want to communicate, but also on all intermediate nodes on the two paths
connecting the end-nodes. Since ICPC charges customers according to how many copies of their software
have to be installed, it would be interesting to have a program that for any network and end-node pair
finds the cheapest way to connect the nodes.
输入格式
The input consists of several descriptions of networks. The first line of each description contains two
integers N and M (2 ≤ N ≤ 100), the number of nodes and edges in the network, respectively.
The nodes in the network are labeled 1, 2, . . . , N, where nodes 1 and 2 are the ones that want to
communicate. The first line of the description is followed by M lines containing two integers X and Y
(1 ≤ X, Y ≤ N), denoting that there is a directed edge from X to Y in the network.
The last description is followed by a line containing two zeroes.
输出格式
For each network description in the input, display its number in the sequence of descriptions. Then
display the minimum number of nodes on which the software has to be installed, such that there is
a directed path from node 1 to node 2 using only the nodes with the software, and also a path from
node 2 to node 1 with the same property. (Note that a node can be on both paths but a path need not
contain all the nodes.) The count should include nodes 1 and 2.
If node 1 and 2 cannot communicate, display ‘IMPOSSIBLE’ instead.
Follow the format in the sample given below, and display a blank line after each test case.
样例输入
8 12
1 3
3 4
4 2
2 5
5 6
6 1
1 7
7 1
8 7
7 8
8 2
2 8
2 1
1 2
0 0
样例输出
Network 1
Minimum number of nodes = 4
Network 2
IMPOSSIBLE
题目大意
n 个点m条边, 从点1走到点2再走回去, 求最少经过多少个不同的点. (n<=100)
解析
可以把经过1和2的环拆成从1出发到2的路径和从2到1的路径。如果我们建立原图的反图,那么就是求正图上从1出发到2的路径和反图上从1出发到2的路径最少经过的不同的点。这个可以利用动态规划加最短路的思想。设状态\(f[i][j]\)表示正图上到i、反图上到j经过的最少的不同点个数。转移时用Dijkstra最短路的形式,在正图和反图上分别沿着当前点的边扩展一次,如果更新就放进队列当中。有如下转移方程:
f[v][u2]=f[u1][u2]+[u2!=v],((u1,v)\in E1)
\]
但是,我们会发现,某些情况下\(f[i][j]\)的值会比实际情况多。对于这种有偏差的情况,我们可以换一种转移的方式。通过观察,发现这种情况下,\(f[i][j]\)是由\(f[j][i]\)多走j到i的最短路得到的。因此,我们有
\]
\(dis[i][j]\)表示i到j的最短路,可用Floyd求出。注意,如果不是特殊情况,\(f[u1][u2]+dis[u1][u2]-1\)会得到错误的答案。所以要去最小值。
代码
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#define N 102
#define M 10002
using namespace std;
const int inf=0x3f3f3f3f;
struct node{
int x1,x2,d;
node(int _x1,int _x2,int _d){
x1=_x1;x2=_x2;d=_d;
}
};
bool operator < (node a,node b) { return a.d>b.d; }
int head1[N],ver1[M*2],nxt1[M*2],l1;
int head2[N],ver2[M*2],nxt2[M*2],l2;
int t,n,m,i,j,k,f[N][N],dis[N][N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
void insert1(int x,int y)
{
l1++;
ver1[l1]=y;
nxt1[l1]=head1[x];
head1[x]=l1;
}
void insert2(int x,int y)
{
l2++;
ver2[l2]=y;
nxt2[l2]=head2[x];
head2[x]=l2;
}
void Dijkstra()
{
priority_queue<node> q;
memset(f,0x3f,sizeof(f));
f[1][1]=1;
q.push(node(1,1,1));
while(!q.empty()){
int x1=q.top().x1,x2=q.top().x2,d=q.top().d;
q.pop();
if(d!=f[x1][x2]) continue;
for(int i=head1[x1];i;i=nxt1[i]){
int y=ver1[i],w=(x2!=y);
if(d+w<f[y][x2]){
f[y][x2]=d+w;
q.push(node(y,x2,f[y][x2]));
}
}
for(int i=head2[x2];i;i=nxt2[i]){
int y=ver2[i],w=(x1!=y);
if(d+w<f[x1][y]){
f[x1][y]=d+w;
q.push(node(x1,y,f[x1][y]));
}
}
if(x1!=x2&&d+dis[x1][x2]-1<f[x2][x1]){
f[x2][x1]=d+dis[x1][x2]-1;
q.push(node(x2,x1,f[x2][x1]));
}
}
}
int main()
{
while(1){
n=read();m=read();
if(n==0&&m==0) break;
memset(head1,0,sizeof(head1));
memset(head2,0,sizeof(head2));
memset(dis,0x3f,sizeof(dis));
l1=l2=0;
for(i=1;i<=m;i++){
int u=read(),v=read();
insert1(u,v);
insert2(v,u);
dis[u][v]=1;
}
for(k=1;k<=n;k++){
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
if(dis[i][j]>dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j];
}
}
}
printf("Network %d\n",++t);
if(dis[1][2]>=inf||dis[2][1]>=inf){
puts("Impossible");
puts("");
continue;
}
Dijkstra();
printf("Minimum number of nodes = %d\n",f[2][2]);
puts("");
}
return 0;
}
[UVa1057] Routing的更多相关文章
- 【UVA1057】Routing
[UVA1057]Routing 题面 洛谷 题解 有一个比较好想的dp就是\(f_{i,j}\)表示第一个点在\(i\),第二个点在\(j\)的最小点数,但是直接搞不好转移. 考虑建出反图,那么\( ...
- 【ZJOI2017 Round1练习&UVA1057】D6T1 Routing(DP,SPFA)
题意:给你一个有向图, 并指定起点和终点. 问要从起点走向终点, 再从终点走向起点, 最少需要走过多少不同的节点. 对于 100%的数据, 有 N<=100, M<=min(1000,N* ...
- ASP.NET路由[ASP.NET Routing]
ASP.NET路由[ASP.NET Routing] ASP.NET路由允许你在使用URL时不必匹配到网站中具体的文件,因为这个URL不必匹配到一个文件,你使用了描述用户行为且更容易被用户理解的URL ...
- 解读ASP.NET 5 & MVC6系列(12):基于Lamda表达式的强类型Routing实现
前面的深入理解Routing章节,我们讲到了在MVC中,除了使用默认的ASP.NET 5的路由注册方式,还可以使用基于Attribute的特性(Route和HttpXXX系列方法)来定义.本章,我们将 ...
- 解读ASP.NET 5 & MVC6系列(11):Routing路由
新版Routing功能介绍 在ASP.NET 5和MVC6中,Routing功能被全部重写了,虽然用法有些类似,但和之前的Routing原理完全不太一样了,该Routing框架不仅可以支持MVC和We ...
- [ASP.NET MVC 小牛之路]07 - URL Routing
我们知道在ASP.NET Web Forms中,一个URL请求往往对应一个aspx页面,一个aspx页面就是一个物理文件,它包含对请求的处理. 而在ASP.NET MVC中,一个URL请求是由对应的一 ...
- ASP.NET MVC Routing学习笔记(一)
Routing在ASP.NET MVC中是非常核心的技术,属于ASP.NET MVC几大核心技术之一,在使用Routing之前,得先引入System.Web.Routing,但其实不用这么麻烦,因为在 ...
- Routing 功能概述 - 每天5分钟玩转 OpenStack(98)
路由服务(Routing)提供跨 subnet 互联互通功能. 例如前面我们搭建了实验环境: cirros-vm1 172.16.100.3 vlan100 cirros-vm ...
- .NET/ASP.NET Routing路由(深入解析路由系统架构原理)
阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4 ...
随机推荐
- ubuntu 环境配置
安装包准备 下载 410以上显卡驱动 文件名: NVIDIA-Linux-x86_64-410.66.run 下载 cuda 10.0 选择 CUDA Toolkit 10.0 (Sept 2018) ...
- 应用安全 - 无文件攻击 - Office漏洞 - 汇总
CVE-2017-0199 Date: -1 类型: 弹窗|内网穿透导致远程代码执行 影响范围: Microsoft Office 2007 Service Pack 3 Microsoft Offi ...
- kafka学习(三)
kafka 消费者-从kafka读取数据 消费者和消费者群里 kafka消费者从属于消费者群组.一个群组里的消费者订阅的是同一主题,每个消费者接受主题一部分分区的消息.如果我们往群组里添加更多的消 ...
- 创建一个项目并在GitHub上发出拉取请求
1.第一步:创建存储库 创建新存储库: New repository 命名存储库 写一个简短的描述 选择使用自述文件初始化此存储库 2.第二步:创建一个分支 创建一个新分支 转到新的存储库hello- ...
- adb 连接 mumu 模拟器
[win版]adb connect 127.0.0.1:7555adb shell [mac版] adb kill-server && adb server && ad ...
- SET ANSI_NULL ON 和 SET QUOTED_IDENTIFIFR ON
本文转自:https://blog.csdn.net/qq112212qq/article/details/84578263 SET ANSI_NULL ON : 判断非空:where colunm ...
- SSIS包定时执行
企业管理器 --管理 --SQL Server代理 --右键作业 --新建作业 --"常规"项中输入作业名称 --"步骤"项 --新建 --"步骤名& ...
- php编译完成后,module追加编译进php
# 如果在编译的时候忘记添加某些模块,可以使用这种办法来重新编译添加! # 首先,进入PHP目录(未编译)的扩展目录 cd /home/soft/php-5.2.14/ext/ftp/ # 调用php ...
- P2218 [HAOI2007]覆盖问题
传送门 首先可以想到二分答案,然后考虑判断 注意到所有点的外包矩形的四条边一定要被覆盖到,而正方形只有 $3$ 个,所以一定有一个正方形在角落 考虑爆搜,枚举正方形在当前外包矩形的那个角,然后对剩下的 ...
- 2019 NCTF Re WP
0x01 debug 测试文件:https://www.lanzous.com/i7kr2ta 1.Linux运行环境 在Linux上运行linux_server64文件 2.IDA配置 __int6 ...