HYSBZ-4033-树上染色(树上DP)
链接:
https://vjudge.net/problem/HYSBZ-4033
题意:
有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并
将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。
思路:
数上任意两点的距离,每条边e(u,v)的贡献是cntl[u], cntr[v], 就是u左边的点乘上v右边的点乘上权值.
同时令DP[u][k]为u的子树中有k个黑点,的最大值.
在DFS中从u到v可推出Dp[u][i+j] = max(Dp[u][i+j], Dp[u][j]+Dp[v][i]+dis*cnt)其中Dp[u][j]为以u为根,别的边的贡献.
Dp[v][i]表示此条边连着的v的子数的贡献,最后算出这条边的贡献.
cnt就是两端黑白的组合数.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#include <assert.h>
#include <iomanip>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 2e3+10;
struct Node
{
int to;
LL dis;
};
vector<Node> G[MAXN];
LL Dp[MAXN][MAXN];
int Cnt[MAXN];
int n, k;
void Dfs(int u, int v)
{
Cnt[v] = 1;
for (int i = 0;i < G[v].size();i++)
{
int node = G[v][i].to;
if (node == u)
continue;
Dfs(v, node);
for (int j = min(Cnt[v], k);j >= 0;j--)
{
for (int z = min(Cnt[node], k);z >= 0;z--)
{
LL ti = 1LL*z*(k-z)+1LL*(Cnt[node]-z)*(n-Cnt[node]-(k-z));
Dp[v][j+z] = max(Dp[v][j+z], Dp[v][j]+Dp[node][z]+G[v][i].dis*ti);
}
}
Cnt[v] += Cnt[node];
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> k;
int u, v;
LL w;
for (int i = 1;i < n;i++)
{
cin >> u >> v >> w;
G[u].push_back(Node{v, w});
G[v].push_back(Node{u, w});
}
Dfs(0, 1);
cout << Dp[1][k] << endl;
return 0;
}
HYSBZ-4033-树上染色(树上DP)的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- [HAOI2015]树上染色(树上dp)
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...
- 【HAOI2015】树上染色—树形dp
[HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...
- 【BZOJ】4033: [HAOI2015]树上染色 树上背包
[题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 【HAOI2015】树上染色 - 树形 DP
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
随机推荐
- 2018-12-10 发布 vue全家桶实现的商城web-app,真实数据接口开发
项目地址:https://github.com/Rosen97/web-shop.git 博客地址:https://segmentfault.com/a/1190000017323841
- Platform区分不同平台
用于区分平台 OS 属性 表示当前的平台类型.只有 ios 与 android 两个值.如可以使用为同一个属性在不同的平台上赋不同的值 const styles = StyleSheet.create ...
- CTF—攻防练习之SMB私钥泄露
攻击机:192.168.32.152 靶机 :192.168.32.155 打开靶机 nmap一下 我们看到了开放了 ssh,smb,mysql这些端口,还有一个大端口 对smb服务我们可以1.使用空 ...
- 安装opencv3.3.0碰到的问题及解决方法
出处:http://osask.cn/front/ask/view/258965 CMakeError.log Compilation failed: source file: '/home/jhro ...
- #Java学习之路——基础阶段二(第十四篇)
我的学习阶段是跟着CZBK黑马的双源课程,学习目标以及博客是为了审查自己的学习情况,毕竟看一遍,敲一遍,和自己归纳总结一遍有着很大的区别,在此期间我会参杂Java疯狂讲义(第四版)里面的内容. 前言: ...
- word2vec原理浅析
1.word2vec简介 word2vec,即词向量,就是一个词用一个向量来表示.是2013年Google提出的.word2vec工具主要包含两个模型:跳字模型(skip-gram)和连续词袋模型( ...
- css3实现倾斜转动的转盘
HTML代码: <div class="r-1">a</div> <div class="r-2">a</div> ...
- Linux MFS分布式文件系统介绍和安装
MFS分布式文件系统 mooseFS(moose 驼鹿)是一款网络分布式文件系统.它把数据分散在多台服务器上,但对于用户来讲,看到的只是一个源.MFS也像其他类unix文件系统一样,包含了层级结构(目 ...
- PTA(Basic Level)1031.查验身份证
一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8, ...
- SpringBoot_02通用mapper
注意:一旦引入了通用Mapper的启动器,会覆盖Mybatis官方启动器的功能,因此需要移除对官方Mybatis启动器的依赖. 无需任何配置就可以使用了.如果有特殊需要,可以到通用mapper官网查看 ...