http://codeforces.com/gym/101206/attachments

题意:

T组输入,每组给出m,n,k,m为能量总数,n为水晶种类数,k为合成方案数。有的水晶可以用能量制造,有的水晶不行,有的水晶可以通过其他水晶合成。每种水晶都有固定的价格。给出部分水晶的造价,所有水晶的价格和k个合成方案,问卖水晶最大能获得的钱数

思路:

可以将合成操作理解为最短路中的松弛操作,套bellman_ford的方法,每次遍历所有合成方案一次,若没有一个水晶造价被松弛,则跳出循环,所有造价均已达到最小

之后套用完全背包即可(每种水晶可以使用无限次,能量有限)

#include <bits//stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=205;
ll w[maxn],p[maxn];
ll obj[maxn],num[maxn],use[maxn][maxn],cost[maxn][maxn];
ll dp[maxn];
int T,m,n,k;
void bellman_ford(){
while(1){
int flag=0;
for(int i=1;i<=k;i++){
ll cos=0;
for(int j=1;j<=num[i];j++){
if(w[use[i][j]]==-1){
cos=-1;break;
}
cos+=w[use[i][j]]*cost[i][j];
}
if(cos!=-1){
if(cos<w[obj[i]]||w[obj[i]]==-1){
w[obj[i]]=cos;
flag=1;
}
}
}
if(!flag)break;
}
}
void init(){
for(int i=1;i<=n;i++){
w[i]=-1;
}
for(int i=0;i<=m;i++)
dp[i]=0;
}
int main(){
cin>>T;
for(int kase=1;kase<=T;kase++){
scanf("%d%d%d",&m,&n,&k);
init();
for(int i=1;i<=n;i++){
int type;
scanf("%d",&type);
if(type)
scanf("%lld%lld",&w[i],&p[i]);
else
scanf("%lld",&p[i]);
}
for(int i=1;i<=k;i++){
scanf("%lld%lld",&obj[i],&num[i]);
for(int j=1;j<=num[i];j++){
scanf("%lld%lld",&use[i][j],&cost[i][j]);
}
}
bellman_ford();
for(int i=1;i<=n;i++){
if(w[i]==-1)continue;
for(int j=w[i];j<=m;j++){
dp[j]=max(dp[j],dp[j-w[i]]+p[i]);
}
}
printf("Case #%d: %lld\n",kase,dp[m]);
}
}
/*
2
100 3 2
0 20
1 15 10
1 2 1
1 2 2 1 3 1
2 1 3 2
100 3 2
1 3 1
1 4 1
0 10
3 1 1 3
3 1 2 2
*/

Mr. Panda and Crystal(最短路+完全背包)的更多相关文章

  1. hdu6007 Mr. Panda and Crystal 最短路+完全背包

    /** 题目:hdu6007 Mr. Panda and Crystal 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6007 题意:魔法师有m能量,有n ...

  2. Mr. Panda and Crystal HDU - 6007 最短路+完全背包

    题目:题目链接 思路:不难看出,合成每个宝石需要消耗一定的魔力值,每个宝石有一定的收益,所以只要我们知道每个宝石合成的最小花费,该题就可以转化为一个背包容量为初始魔力值的完全背包问题,每个宝石的最小花 ...

  3. HDU 6007 Mr. Panda and Crystal (背包+spfa)

    题意:你生活在一个魔法大陆上,你有n 魔力, 这个大陆上有m 种魔法水晶,还有n 种合成水晶的方式,每种水晶价格告诉你,并且告诉你哪些水晶你能直接造出来,哪些你必须合成才能造出来,问你n魔力最多能卖多 ...

  4. HDU 3339 In Action【最短路+01背包】

    题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=3339] In Action Time Limit: 2000/1000 MS (Java/Other ...

  5. HDU 3339 In Action【最短路+01背包模板/主要是建模看谁是容量、价值】

     Since 1945, when the first nuclear bomb was exploded by the Manhattan Project team in the US, the n ...

  6. 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理

    2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...

  7. H - Mr. Panda and Birthday Song Gym - 101775H (动态规划)

    Mrs. Panda’s birthday is coming. Mr. Panda wants to compose a song as gift for her birthday. It is k ...

  8. *HDU3339 最短路+01背包

    In Action Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. HDU 3339 In Action 最短路+01背包

    题目链接: 题目 In Action Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. 在没有iis的情况下,webApi自托管(转自momo314)

    第一步 新建一个控制台应用程序 并添加WebApi相关引用,注意,添加之后会默认帮你添加 System.Web.Http.WebHost 的引用,不过,折并没有什么鸟用,干掉他,然后手动添加引用 Sy ...

  2. 线程休眠只会用 Thread.sleep?来,教你新姿势!

    线程休眠是 Java 开发经常会用到的一个手段,就是让当前线程睡一会儿,睡醒之后再继续运行. 咱大多数程序员,多线程虽然学得不好,但线程休眠,无人不知,无人不晓,也都会用,不就是用 Thread.sl ...

  3. bjsxt学习笔记:Dubbo

    一.Dubbo诞生背景(摘自Dubbo官网-入门-背景) 二.Dubbo架构图(摘自Dubbo官网-入门-架构) 三.Dubbo核心依赖(jar包):dubbo.zkclient 四.Dubbo项目搭 ...

  4. Python入门习题10.河内塔(汉诺塔)问题

    例10 共n个圆盘,a,b,c三根柱子 #汉诺塔问题.py def Hanoi(n): #定义n阶汉诺塔问题移动次数函数 if n == 1: return 1 else: return 2*Hano ...

  5. 小Z的袜子(题解)(莫队)

    小Z的袜子(题解)(莫队) Junlier良心莫队 题目 luoguP1494 [国家集训队]小Z的袜子 code #include<bits/stdc++.h> #define lst ...

  6. 04 volatile关键字实现原理

    volatile关键字实现原理 1.volatile关键字的语义分析 作用:让其他线程能够马上感知到某个线程多某个变量的修改 保证可见性 对共享变量的修改,其他线程能够马上感知到 保证有序性 在重排序 ...

  7. redhat6.5单用户重置root密码

    (1),按 “e” 键进入该界面,继续按 “e” 键进入下一个界面. (2).上下键选中第二个kernel选项,继续按 “e” 键进行编辑. (3).在新的界面里面加一个空格,再输入“1”:或者输入“ ...

  8. node留言板开发————node.js

    各位需要的话可以下载去看一下. 源码下载链接:https://download.csdn.net/download/weixin_41018304/11833778

  9. [NOIP2017普及组]跳房子(二分,单调队列优化dp)

    [NOIP2017普及组]跳房子 题目描述 跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则如下: 在地面上确定一个起点,然后在起点右侧画 nn 个格子, ...

  10. linux内核启动过程

    作者:严哲璟 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 通过qemu以 ...