【学习笔记】整体二分(BZOJ2738矩阵乘法)
也是因为一道题才来学的。。。
然后就发现这道模板貌似是暑假初期在某校集训的时候的比赛题 并且好像没改= =
前置芝士
1.二分= =
* CDQ分治[你要是知道CDQ分治的话这玩意就很好理解啦]
*本题使用二维树状数组
整体二分是类似CDQ分治的一类东西
CDQ分治是计算左边对右边的贡献
整体二分是计算左边的贡献来确定答案在哪边
具体来说就是这样一个过程
[l,r,L,R] : 小写代表答案区间 大写表示询问区间
我们通过计算 l 到 mid 的答案 来确定[L,R]的询问的答案是属于[l,mid]还是[mid,r]
对于这个题就是把<=mid的值计算贡献 然后对于这些询问看是否>=k 这样就可以同时二分答案和询问从而做到均摊nlgn
代码实现并不复杂。 注意权值和询问别放反了= =
附代码。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define lowbit(x) (x&(-x))
#define mxn 60010
using namespace std;
struct node{int x,y,v;}t[250010];
struct query{int x1,x2,y1,y2,k;}q[mxn];
int f[510][510],n,ans[mxn],id[mxn];
int cur[mxn],cr[mxn],m,cnt=0;
int val[250010];
void modify(int x,int y,int v)
{
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j))
f[i][j]+=v;
}
int query(int x,int y)
{
int ans=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
ans+=f[i][j];
return ans;
}
int get(int x1,int x2,int y1,int y2)
{
//puts("");
return query(x2,y2) - query(x1-1,y2) - query(x2,y1-1) + query(x1-1,y1-1);
}
int now;
void work(int l,int r,int L,int R)// [L,R] val [l,r] query
{
//printf("%d %d %d %d\n",l,r,L,R);
if(l>r) return;
if(L==R)
{
for(int i=l;i<=r;i++) ans[id[i]]=val[L];
return;
}
int MID = L+R>>1;
while(now<MID) now++,modify(t[now].x,t[now].y,1);
while(now>MID) modify(t[now].x,t[now].y,-1),now--;
int l1=0,l2=0,mid;
for(int i=l;i<=r;i++)
{
int x=id[i];// printf("%d\n",i);
int tmp = get(q[x].x1,q[x].x2,q[x].y1,q[x].y2);
if(tmp >= q[x].k) cur[++l1] = x;
else cr[++l2] = x;
}
mid = l+l1-1;
for(int i=1;i<=l1;i++)
id[l+i-1]=cur[i];
for(int i=1;i<=l2;i++)
id[mid+i]=cr[i];
work(l,mid,L,MID); work(mid+1,r,MID+1,R);
}
bool cmp(node a,node b)
{
return a.v<b.v;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
t[++cnt].x=i,t[cnt].y=j,scanf("%d",&t[cnt].v);
sort(t+1,t+cnt+1,cmp);
for(int i=1;i<=cnt;i++) val[i]=t[i].v;
for(int i=1;i<=m;i++)
scanf("%d%d%d%d%d",&q[i].x1,&q[i].y1,&q[i].x2,&q[i].y2,&q[i].k),id[i]=i;
work(1,m,1,cnt);
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}
【学习笔记】整体二分(BZOJ2738矩阵乘法)的更多相关文章
- [bzoj2738]矩阵乘法_整体二分_树状数组
矩阵乘法 bzoj-2738 题目大意:给定一个$n*n$的矩阵.每次给定一个矩阵求矩阵$k$小值. 注释:$1\le n\le 500$,$1\le q\le 6\cdot 10^4$. 想法: 新 ...
- BZOJ2738矩阵乘法——整体二分+二维树状数组
题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5 ...
- BZOJ2738 矩阵乘法 【整体二分 + BIT】
题目链接 BZOJ2738 题解 将矩阵中的位置取出来按权值排序 直接整体二分 + 二维BIT即可 #include<algorithm> #include<iostream> ...
- BZOJ2738: 矩阵乘法(整体二分)
Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. Input 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N*N个数,表示这个矩阵: ...
- [BZOJ2738]矩阵乘法-[整体二分+树状数组]
Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. (N<=500,Q<=60000) Solution 考虑二分答案,问题转化为求矩阵内为1 ...
- [BZOJ2738]矩阵乘法 整体二分+二维树状数组
2738: 矩阵乘法 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1643 Solved: 715[Submit][Status][Discuss ...
- BZOJ2738 矩阵乘法(整体二分+树状数组)
单个询问二分答案即可,多组询问直接整体二分再二维BIT.注意保证复杂度. #include<iostream> #include<cstdio> #include<cma ...
- [BZOJ2738]矩阵乘法(整体二分+二维树状数组)
整体二分+二维树状数组. 好题啊!写了一个来小时. 一看这道题,主席树不会搞,只能用离线的做法了. 整体二分真是个好东西,啥都可以搞,尤其是区间第 \(k\) 大这种东西. 我们二分答案,然后用二维树 ...
- 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67
本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...
随机推荐
- BZOJ 3675: [Apio2014]序列分割 动态规划 + 斜率优化 + 卡精度
Code: #include<bits/stdc++.h> #define N 100006 #define M 205 #define ll long long #define setI ...
- K短路模板POJ 2449 Remmarguts' Date
Time Limit: 4000MS Memory Limit: 65536K Total Submissions:32863 Accepted: 8953 Description &qu ...
- C++ 得到系统时间
Time::Time() {//得到系统时间 初始化 time_t t; t=time(NULL); tm *lt; lt=localtime(&t); hour=lt->tm_hour ...
- 【HDOJ6695】Welcome Party(multiset)
题意: n<=1e5,x[i],y[i]<=1e18 思路: #include<bits/stdc++.h> using namespace std; typedef long ...
- C#在WinForm开发中Label换行方法
很多朋友都会在开发WinForm中遇到Label要显示的内容太长,但却不能换行的问题.这里我总结了几种方法,供大家参考. 第一种是把Label的AutoSize属性设为False,手动修改Label的 ...
- 图论 List
题目 #A 小 K 的农场 (Unaccepted) #B 信息传递 (Unaccepted) #C 最短路计数 (Accepted) #D 通往奥格瑞玛的道路 (Accepted) ...
- 如何选择Linux操作系统版本?
一般来讲, 桌面用户首选Ubuntu; 服务器首选RHEL或CentOS, 两者中首选CentOS; 根据具体要求: 1.安全性要求较高, 则选择Debian或者FreeBSD. 2.需要要使用数据库 ...
- What is httpcontext
https://docs.microsoft.com/en-us/dotnet/api/system.web.httpcontext?view=netframework-4.8 Encapsulate ...
- “The creator of this fault did not specify a Reason” Exception
“The creator of this fault did not specify a Reason” Exception if(!DidItPass) { InvalidRoutingCodeFa ...
- 牛客提高D4t3 清新题
分析 树上从下往上线性基合并即可 并不需要启发式/xyx 代码 #include<iostream> #include<cstdio> #include<cstring& ...