spark 笔记 16: BlockManager

/* Class for returning a fetched block and associated metrics. */
private[spark] class BlockResult(
val data: Iterator[Any],
readMethod: DataReadMethod.Value,
bytes: Long) {
val inputMetrics = new InputMetrics(readMethod)
inputMetrics.bytesRead = bytes
}
private[spark] class BlockManager(
executorId: String,
actorSystem: ActorSystem,
val master: BlockManagerMaster,
defaultSerializer: Serializer,
maxMemory: Long,
val conf: SparkConf,
securityManager: SecurityManager,
mapOutputTracker: MapOutputTracker,
shuffleManager: ShuffleManager)
extends BlockDataProvider with Logging {
/**
* Contains all the state related to a particular shuffle. This includes a pool of unused
* ShuffleFileGroups, as well as all ShuffleFileGroups that have been created for the shuffle.
*/
private class ShuffleState(val numBuckets: Int) {
val nextFileId = new AtomicInteger(0)
val unusedFileGroups = new ConcurrentLinkedQueue[ShuffleFileGroup]()
val allFileGroups = new ConcurrentLinkedQueue[ShuffleFileGroup]()
/**
* The mapIds of all map tasks completed on this Executor for this shuffle.
* NB: This is only populated if consolidateShuffleFiles is FALSE. We don't need it otherwise.
*/
val completedMapTasks = new ConcurrentLinkedQueue[Int]()
}
private val shuffleStates = new TimeStampedHashMap[ShuffleId, ShuffleState]
private val metadataCleaner =
new MetadataCleaner(MetadataCleanerType.SHUFFLE_BLOCK_MANAGER, this.cleanup, conf)
/**
* Register a completed map without getting a ShuffleWriterGroup. Used by sort-based shuffle
* because it just writes a single file by itself.
*/
def addCompletedMap(shuffleId: Int, mapId: Int, numBuckets: Int): Unit = {
shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets))
val shuffleState = shuffleStates(shuffleId)
shuffleState.completedMapTasks.add(mapId)
}
/**
* Initialize the BlockManager. Register to the BlockManagerMaster, and start the
* BlockManagerWorker actor.
*/
private def initialize(): Unit = {
master.registerBlockManager(blockManagerId, maxMemory, slaveActor)
BlockManagerWorker.startBlockManagerWorker(this)
}
/**
* A short-circuited method to get blocks directly from disk. This is used for getting
* shuffle blocks. It is safe to do so without a lock on block info since disk store
* never deletes (recent) items.
*/
def getLocalFromDisk(blockId: BlockId, serializer: Serializer): Option[Iterator[Any]] = {
diskStore.getValues(blockId, serializer).orElse {
throw new BlockException(blockId, s"Block $blockId not found on disk, though it should be")
}
}
/** A group of writers for a ShuffleMapTask, one writer per reducer. */
private[spark] trait ShuffleWriterGroup {
val writers: Array[BlockObjectWriter]
/** @param success Indicates all writes were successful. If false, no blocks will be recorded. */
def releaseWriters(success: Boolean)
}
/**
* Manages assigning disk-based block writers to shuffle tasks. Each shuffle task gets one file
* per reducer (this set of files is called a ShuffleFileGroup).
*
* As an optimization to reduce the number of physical shuffle files produced, multiple shuffle
* blocks are aggregated into the same file. There is one "combined shuffle file" per reducer
* per concurrently executing shuffle task. As soon as a task finishes writing to its shuffle
* files, it releases them for another task.
* Regarding the implementation of this feature, shuffle files are identified by a 3-tuple:
* - shuffleId: The unique id given to the entire shuffle stage.
* - bucketId: The id of the output partition (i.e., reducer id)
* - fileId: The unique id identifying a group of "combined shuffle files." Only one task at a
* time owns a particular fileId, and this id is returned to a pool when the task finishes.
* Each shuffle file is then mapped to a FileSegment, which is a 3-tuple (file, offset, length)
* that specifies where in a given file the actual block data is located.
*
* Shuffle file metadata is stored in a space-efficient manner. Rather than simply mapping
* ShuffleBlockIds directly to FileSegments, each ShuffleFileGroup maintains a list of offsets for
* each block stored in each file. In order to find the location of a shuffle block, we search the
* files within a ShuffleFileGroups associated with the block's reducer.
*/
// TODO: Factor this into a separate class for each ShuffleManager implementation
private[spark]
class ShuffleBlockManager(blockManager: BlockManager,
shuffleManager: ShuffleManager) extends Logging {
private[spark]
object ShuffleBlockManager {
/**
* A group of shuffle files, one per reducer.
* A particular mapper will be assigned a single ShuffleFileGroup to write its output to.
*/
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
private var numBlocks: Int = 0
/**
* Stores the absolute index of each mapId in the files of this group. For instance,
* if mapId 5 is the first block in each file, mapIdToIndex(5) = 0.
*/
private val mapIdToIndex = new PrimitiveKeyOpenHashMap[Int, Int]()
/**
* Stores consecutive offsets and lengths of blocks into each reducer file, ordered by
* position in the file.
* Note: mapIdToIndex(mapId) returns the index of the mapper into the vector for every
* reducer.
*/
private val blockOffsetsByReducer = Array.fill[PrimitiveVector[Long]](files.length) {
new PrimitiveVector[Long]()
}
private val blockLengthsByReducer = Array.fill[PrimitiveVector[Long]](files.length) {
new PrimitiveVector[Long]()
}
def apply(bucketId: Int) = files(bucketId)
def recordMapOutput(mapId: Int, offsets: Array[Long], lengths: Array[Long]) {
assert(offsets.length == lengths.length)
mapIdToIndex(mapId) = numBlocks
numBlocks += 1
for (i <- 0 until offsets.length) {
blockOffsetsByReducer(i) += offsets(i)
blockLengthsByReducer(i) += lengths(i)
}
}
/** Returns the FileSegment associated with the given map task, or None if no entry exists. */
def getFileSegmentFor(mapId: Int, reducerId: Int): Option[FileSegment] = {
val file = files(reducerId)
val blockOffsets = blockOffsetsByReducer(reducerId)
val blockLengths = blockLengthsByReducer(reducerId)
val index = mapIdToIndex.getOrElse(mapId, -1)
if (index >= 0) {
val offset = blockOffsets(index)
val length = blockLengths(index)
Some(new FileSegment(file, offset, length))
} else {
None
}
}
}
}
spark 笔记 16: BlockManager的更多相关文章
- Ext.Net学习笔记16:Ext.Net GridPanel 折叠/展开行
Ext.Net学习笔记16:Ext.Net GridPanel 折叠/展开行 Ext.Net GridPanel的行支持折叠/展开功能,这个功能个人觉得还说很有用处的,尤其是数据中包含图片等内容的时候 ...
- 安装Hadoop及Spark(Ubuntu 16.04)
安装Hadoop及Spark(Ubuntu 16.04) 安装JDK 下载jdk(以jdk-8u91-linux-x64.tar.gz为例) 新建文件夹 sudo mkdir /usr/lib/jvm ...
- SQL反模式学习笔记16 使用随机数排序
目标:随机排序,使用高效的SQL语句查询获取随机数据样本. 反模式:使用RAND()随机函数 SELECT * FROM Employees AS e ORDER BY RAND() Limit 1 ...
- golang学习笔记16 beego orm 数据库操作
golang学习笔记16 beego orm 数据库操作 beego ORM 是一个强大的 Go 语言 ORM 框架.她的灵感主要来自 Django ORM 和 SQLAlchemy. 目前该框架仍处 ...
- spark的存储系统--BlockManager源码分析
spark的存储系统--BlockManager源码分析 根据之前的一系列分析,我们对spark作业从创建到调度分发,到执行,最后结果回传driver的过程有了一个大概的了解.但是在分析源码的过程中也 ...
- spark笔记 环境配置
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...
- spark 笔记 15: ShuffleManager,shuffle map两端的stage/task的桥梁
无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的 ...
- spark 笔记 12: Executor,task最后的归宿
spark的Executor是执行task的容器.和java的executor概念类似. ===================start executor runs task============ ...
- Spark笔记:复杂RDD的API的理解(下)
本篇接着谈谈那些稍微复杂的API. 1) flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接 ...
随机推荐
- Linux下nouveau操作和GPU的操作,nouveau拯救
之前也提到了,旧机器上有一块NVIDIA的显卡,装了ubuntu16.04后一直没有安装驱动.这周算是有点时间,就差点作了死. 首先必须澄清,这个不是正确的安装过程,起码我就报了memory erro ...
- TensorFlow入门——MNIST深入
#load MNIST data import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_d ...
- LeetCode——回文链表
题目 给定一个链表的头节点head,请判断该链表是否为回 文结构. 例如: 1->2->1,返回true. 1->2->2->1,返回true. 15->6-> ...
- 基于Zabbix 3.2.6版本的Discovery
作用:用于发现某IP网段内存活并且满足一定条件的主机,发现后进行加入到zabbix server进行监控. 操作步骤: 创建[自动发现规则] 为新建的自动发现规则创建[Action] 操作步骤图文 ...
- Linux--Shell 编程-bash,命令替换,if分支嵌套,运算,输入输出
SHELL 编程 shell 是一个命令解释器,侦听用户指令.启动这些指令.将结果返回给用户(交互式的shell) shell 也是一种简单的程序设计语言.利用它可以编写一些系统脚本. ...
- Delphi 监视数据的值
- 基于 Debian 的 Netrunner 19.08 “Indigo” 发布
Netrunner 19.08版本被称为“Indigo”,基于最近发布的Debian GNU/Linux 10 “Buster”操作系统系列,具有KDE Plasma 5.14.5桌面环境,并附带KD ...
- 第10课:[实战] Redis 网络通信模块源码分析(3)
redis-server 接收到客户端的第一条命令 redis-cli 给 redis-server 发送的第一条数据是 *1\r\n\$7\r\nCOMMAND\r\n .我们来看下对于这条数据如何 ...
- Python核心技术与实战——二十|Python的垃圾回收机制
今天要讲的是Python的垃圾回收机制 众所周知,我们现在的计算机都是图灵架构.图灵架构的本质,就是一条无限长的纸带,对应着我们的存储器.随着寄存器.异失性存储器(内存)和永久性存储器(硬盘)的出现, ...
- loj2589 「NOIP2009」Hankson 的趣味题
对于质因数分解理解还不到位. 此题可知$lcm$是$x$的倍数,$x$是$lcm$的约数,只要在$lcm$的分解质因数里对每一个质因子讨论种数即可. 具体来说,对于$lcm$的一个质因子$p$,讨论$ ...