affyPLM包可以对芯片原始数据进行拟合回归,最后得到芯片权重(Weights)残差(Residuals)图、相对对数表达(RLE,Relative log expression)箱线图、相对标准差(NUSE,Normalized unscaled standard errors)箱线图

以样品GSM286757.CEL、GSM286756.CEL、GSM286763.CEL、GSM286762.CEL、GSM286759.CEL、GSM286760.CEL、GSM286765.CEL、GSM286766.CEL为例:

library(affyPLM)

rawData<-ReadAffy("GSM286757.CEL","GSM286756.CEL",

"GSM286763.CEL","GSM286762.CEL",

"GSM286759.CEL","GSM286760.CEL",

"GSM286765.CEL","GSM286766.CEL")

Pset <- fitPLM(rawData)

boxplot(Pset,col=c(1:8),main="NUSE")    ## NUSE图

Mbox(Pset,col=c(1:8),main="RLE")      ## RLE图

image(Pset,type="weights",which=1,main="Weights") ## 权重图

image(Pset, type="resids", which=2, main="Residuals") ## 残差图

image(Pset, type="sign.resids", which=2, main="Residuals sign") ## 符号残差图

从上面的代码可以看出,经过了fitPLM的计算得到了权重参差、相对对数表达、相对标准差的数据,但是这些数据在Pset中是怎样存储的呢?

运行下面的代码可以看清楚:

model=PM ~ -1 + probes + samples

model.param=verify.model.param(rawData,model)

variable.type <- verify.variable.types (model,c(default="factor"))

constraint.type <- verify.constraint.types(model,c(default="contr.treatment"))

n.probesets <- length(geneNames(rawData))

R.model <- PLM.designmatrix3(rawData,model,variable.type=variable.type,constraint.type=constraint.type)

output <- verify.output.param()

modelparam <- verify.model.param(rawData,model,model.param=model.param)

background.param <- verify.bg.param(R.model, "RMA.2",background.param = list())

normalize.param <- verify.norm.param(R.model, "quantile",normalize.param=list())

Fitresults <- .Call("R_rlm_PLMset_c",pm(rawData),mm(rawData),

probeNames(rawData),

n.probesets,

R.model,

output,

modelparam,

TRUE,

"RMA.2",

background.param,

TRUE,

"quantile",

normalize.param,

0,

PACKAGE="affyPLM")

其中:

一、Fitresults[[4]]和NUSE有关,它是一个阵列,行数是探针组数目,列数是样品数,长度是探针组数目*样品数

grp.rma.se1.median <- apply(Fitresults[[4]], 1,median,na.rm=TRUE)

grp.rma.rel.se1.mtx <- sweep(Fitresults[[4]],1,grp.rma.se1.median,FUN='/')

## 以上2步操作是让每一行都减去该行的中位数

boxplot(grp.rma.rel.se1.mtx,col=c(1,2,3,4,5,6,7,8),main="NUSE")

二、Fitresults[[1]]和RLE有关,它是一个阵列,行数是探针组数目,列数是样品数,长度是探针组数目*样品数

medianchip <- apply(Fitresults[[1]], 1, median)

M <- sweep(Fitresults[[1]],1,medianchip,FUN='-')

## 以上2步操作是让每一行都减去该行的中位数

boxplot(M,col=c(1,2,3,4,5,6,7,8),main="RLE")

三、Fitresults[[3]][[1]]和权重图有关,它是一个阵列,行数是PM探针数目,列数是样品数,长度是探针数目*样品数。在本例中,PM探针数目是604258,样品数是8,那么第一个样品的权重值是Fitresults[[3]][[1]][,1],长度为探针数目604258

## 查看第一个样品的前50个权重值

> Fitresults[[3]][[1]][,1][1:50]

1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at 1007_s_at

1.0000000 0.8790510 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

1007_s_at 1007_s_at   1053_at   1053_at   1053_at   1053_at   1053_at

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.2046946 1.0000000

1053_at   1053_at   1053_at   1053_at   1053_at   1053_at   1053_at

1.0000000 1.0000000 1.0000000 0.4951793 1.0000000 1.0000000 1.0000000

1053_at   1053_at   1053_at   1053_at    117_at    117_at    117_at

1.0000000 0.4462245 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

117_at    117_at    117_at    117_at    117_at    117_at    117_at

1.0000000 1.0000000 0.6728794 1.0000000 0.3876992 0.8266238 0.7217806

117_at    117_at    117_at    117_at    117_at    117_at    121_at

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

121_at

1.0000000

## 绘制权重图的颜色

col.weights <- terrain.colors(25)

> col.weights

[1] "#00A600FF" "#10AC00FF" "#20B100FF" "#32B700FF" "#45BD00FF" "#59C300FF"

[7] "#6DC900FF" "#83CE00FF" "#9AD400FF" "#B2DA00FF" "#CBE000FF" "#E6E600FF"

[13] "#E6D612FF" "#E7C924FF" "#E8BF36FF" "#E9B848FF" "#EAB35AFF" "#EBB16DFF"

[19] "#ECB27FFF" "#EDB592FF" "#EEBCA5FF" "#EFC5B8FF" "#F0D1CBFF" "#F1E0DFFF"

[25] "#F2F2F2FF"

这里有25个颜色,[1]~[25],从草绿色渐变到橘黄色,再渐变到接近白色。越小的权重值分配到的颜色越接近草绿色,越大的权重值越接近白色。这样,每个PM探针都有了对应的权重值和颜色,绘制成图像就是权重图了。

四、Fitresults[[8]] [[1]]和残差图有关系,原理和权重图是一样的。

符号残差图根据Fitresults[[8]] [[1]]的数据的正负号来确定颜色,正数红色,0白色,负数蓝色。对Fitresults[[8]] [[1]]进行sign(Fitresults[[8]] [[1]])*(log2(abs(Fitresults[[8]] [[1]])+1))计算后得到的数据用于残差图,残差图的颜色是:

col.resids <- pseudoPalette(low="blue",high="red",mid="white")

> col.resids

[1] "#0000FF" "#0B0BFF" "#1515FF" "#2020FF" "#2A2AFF" "#3535FF" "#4040FF"

[8] "#4A4AFF" "#5555FF" "#6060FF" "#6A6AFF" "#7575FF" "#8080FF" "#8A8AFF"

[15] "#9595FF" "#9F9FFF" "#AAAAFF" "#B5B5FF" "#BFBFFF" "#CACAFF" "#D4D4FF"

[22] "#DFDFFF" "#EAEAFF" "#F4F4FF" "#FFFFFF" "#FFFFFF" "#FFF4F4" "#FFEAEA"

[29] "#FFDFDF" "#FFD5D5" "#FFCACA" "#FFBFBF" "#FFB5B5" "#FFAAAA" "#FF9F9F"

[36] "#FF9595" "#FF8A8A" "#FF8080" "#FF7575" "#FF6A6A" "#FF6060" "#FF5555"

[43] "#FF4A4A" "#FF4040" "#FF3535" "#FF2B2B" "#FF2020" "#FF1515" "#FF0B0B"

[50] "#FF0000"

颜色从蓝色渐变到红色,再渐变到白色。越小的残差值分配到的颜色越接近蓝色,

这里有50个颜色,[1]~[50],从蓝色渐变到红色,再渐变到接近白色。越小的残差值分配到的颜色越接近蓝色,越大的权重值越接近白色。这样,每个PM探针都有了对应的残差值和颜色,绘制成图像就是残差图了。

11、权重残差图、RLE和NUSE的更多相关文章

  1. 优化深度神经网络(一) dropout 初始化

    Coursera吴恩达<优化深度神经网络>课程笔记(1)-- 深度学习的实用层面 1. Train/Dev/Test sets  训练集(Training sets).验证集(Develo ...

  2. Java 负载均衡

    什么是负载均衡 负载均衡,英文 名称为Load Balance,指由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助.通过某种 负载分 ...

  3. Solr搜索解析及查询解析器用法概述

    一.简介 大多数查询都使用 了标准的Solr语法.这种语法是Solr最常见的,由默认查询解析器负责处理.Solr的默认查询解析器是Lucene查询解析器[LuceneQParserPlugin类实现] ...

  4. R 《回归分析与线性统计模型》page121,4.4

    rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 4) names(A) = c("ord"," ...

  5. Spring Cloud Gateway简单入门,强大的微服务网关

    我最新最全的文章都在南瓜慢说 www.pkslow.com,欢迎大家来喝茶! 1 简介 见名知义,Spring Cloud Gateway是用于微服务场景的网关组件,它是基于Spring WebFlu ...

  6. Kubernetes实战:高可用集群的搭建和部署

    摘要:官方只提到了一句"使用负载均衡器将 apiserver 暴露给工作节点",而这恰恰是部署过程中需要解决的重点问题. 本文分享自华为云社区<Kubernetes 高可用集 ...

  7. 地区sql

    /*Navicat MySQL Data Transfer Source Server : localhostSource Server Version : 50136Source Host : lo ...

  8. 查验身份证 (15 分) 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};然后将计算的和对11取模得到值Z;最后按照以下关系对应Z值与校验码M的值:

    // test4.cpp : 此文件包含 "main" 函数.程序执行将在此处开始并结束.// #include "pch.h"#include <ios ...

  9. 前端极易被误导的css选择器权重计算及css内联样式的妙用技巧

    记得大学时候,专业课的网页设计书籍里面讲过css选择器权重的计算:id是100,class是10,html标签是5等等,然后全部加起来的和进行比较... 我只想说:真是误人子弟,害人不浅! 最近,在前 ...

随机推荐

  1. selenium实现chrome分屏截图的合并

    selenium的截图功能在chrome下无法实现,但是可以操作滚动条来一屏一屏的截图,然后再合并成一张图,合并图片的代码在网上找的,十分感谢那位朋友,具体解决方案如下:直接上代码: def capt ...

  2. hive on tez 任务失败

    最近再hue 集群查询任务经常失败,经过几天的观察,终于找到原因,报错如下 Status: FailedVertex failed, vertexName=Map 1, vertexId=vertex ...

  3. Android Studio基本使用

    1.    创建Android项目 1)    Application name:应用名称,launcher界面显示的 2)    Company Domain:公司域名(sprd.com) 3)   ...

  4. TensorFlow自动求梯度

    例1 import tensorflow as tf a=tf.Variable(tf.constant(1.0),name='a') b=tf.Variable(tf.constant(1.0),n ...

  5. idea maven sync Cannot resolve xxx 的解决方案

    经常会出现这种奇葩情况,提示找不到包 其实是因为网络波动或者突然断掉,导致包更新出现问题 直接去maven的仓库目录 找到不能找到的包 删掉相关目录 然后重新更新maven就行了 比如 直接去仓库目录 ...

  6. C++类的默认成员函数

    成员函数隐含this指针参数: 每成员函数一个隐式的指针形参(构造函数除外): 对象在调用成员函数时,编译器会将对象的地址传递给this指针: 1.构造函数(需用一个公有成员函数对私有的成员变量进行初 ...

  7. python dict字典添加元素

    已存在的字典进行赋值操作 可为该字典添加新元素例子:a = {‘age’: 23, ‘name’: ‘lala}a[school] = ‘nanhaizhongxue’print a>>& ...

  8. 使用SNMP监控服务器运行情况

    系统监测的基本概念及分类: a.系统监测的概述: 如何对现有IT架构的整体以及细节运行情况进行科学.系统和高效地监测是目前各企业运维和管理部门一项非常重要的工作内容.随着当前企业IT环境中服务器.应用 ...

  9. Linux_系统破坏性修复实验

    目录 目录 修改系统用户密码 grub修复 系统修复 最后 修改系统用户密码 随便介绍一个修改Linux系统用户密码的方法. 步骤: 开机读秒时按任意键 进入grub列表项配置按e 选择系统kerne ...

  10. nmon(linux监视)

    nmon –f –t –r test –s 10 –c 60 即为10分钟 上面命令的含义是:-f :按标准格式输出文件名称:<hostname>_YYYYMMDD_HHMM.nmon-t ...