T1

\(\sum_{i=1}^N \sum_{j=1}^M [(i,j)=1]\)

\(f(d)=\sum_{i=1}^N \sum_{j=1}^M [(i,j)=d]\)

\(g(d)=\sum_{i=1}^N \sum_{i=1}^M [d|(i,j)]=\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor\)

\(g(n)=\sum_{n|d} f(d)\)

\(f(n)=\sum_{n|d} \mu(\frac{d}{n})g(d)\)

\(f(1)=\sum_{i=1}^{\min(N,M)} \mu(i)\lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{i} \rfloor\)

T2

\(\sum_{i=1}^N \sum_{j=1}^M (i,j)\)

\(f(d)=\sum_{i=1}^N \sum_{j=1}^M d[(i,j)=d]=\sum_{i=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} d\mu(i) \lfloor \frac{N}{id} \rfloor \lfloor \frac{M}{id} \rfloor\)

\(Ans=\sum_{d=1}^{\min(N,M)} f(d)=\sum_{d=1}^{\min(N,M)} \sum_{i=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} d\mu(i) \lfloor \frac{N}{id} \rfloor \lfloor \frac{M}{id} \rfloor\)

设\(w=id\)

\(Ans=\sum_{w=1}^{\min(N,M)} \sum_{d|w} d\mu(\frac{w}{d}) \lfloor \frac{N}{w} \rfloor \lfloor \frac{M}{w} \rfloor\)

\(\sum_{d|w} d\mu(\frac{w}{d})=\phi(w)\)显然是积性函数,线性筛后做下前缀和,离线\(\Theta(\min(N,M))\)

\(\sum_{w=1}^{\min(N,M)} \lfloor \frac{N}{w} \rfloor \lfloor \frac{M}{w} \rfloor\) 整除分块可以做到在线\(\Theta(\sqrt{N}+\sqrt{M})\)

多组询问下总复杂度\(\Theta(\min(N,M)+T(\sqrt{N}+\sqrt{M}))\)

T3

\(\sum_{i=1}^N \sum_{j=1}^M \frac{ij}{(i,j)}\)

\(f(d)=\sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ijd[(i,j)=1]=d \sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ij[(i,j)=1]\)

\(Ans=\sum_{d=1}^{\min(N,M)} f(d)\)

\(Ans=\sum_{d=1}^{\min(N,M)} d \sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ij\sum_{n|(i,j)} \mu(n)\)

\(Ans=\sum_{d=1}^{\min(N,M)} d \sum_{n=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} n (\sum_{i=1}^{\lfloor \frac{N}{dn} \rfloor} i)n(\sum_{j=1}^{\lfloor \frac{M}{dn} \rfloor} j)\mu(n)\)

设\(w=dn\)

\(Ans=\sum_{w=1}^{\min(N,M)} (\sum_{i=1}^{\lfloor \frac{N}{w} \rfloor} i)(\sum_{j=1}^{\lfloor \frac{M}{w} \rfloor} j) w\sum_{n|w} n \mu(n)\)

线筛前缀和+整除分块

复杂度与上题相同

T4

\(\sum_{i=1}^N \sum_{j=1}^M d(ij)\)

\(\sum_{i=1}^N \sum_{j=1}^M \sum_{a|i} \sum_{b|j} [(a,b)=1]\)

$\sum_{i=1}^N \sum_{j=1}^M \lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{j} \rfloor[(i,j)=1] $

设\(w=(i,j)\)

\(\sum_{w=1}^{\min(N,M)} \mu(w) \sum_{i=1}^{\lfloor \frac{N}{w} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{w} \rfloor} \lfloor \frac{N}{iw} \rfloor \lfloor \frac{M}{jw} \rfloor\)

整除分块+线筛前缀和

复杂度仍然与上题相同

Mobius反演的套路的更多相关文章

  1. Mobius 反演与杜教筛

    积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...

  2. Mobius反演学习

    这篇文章参考了许多资料和自己的理解. 先放理论基础. 最大公约数:小学学过,这里只提一些重要的公式: $·$若$a=b$,则$\gcd(a,b)=a=b$: $·$若$\gcd(a,b)=d$,则$\ ...

  3. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  4. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  5. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  6. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  7. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  8. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  9. Mobius 反演

    上次看莫比乌斯繁衍反演是一个月前,讲道理没怎么看懂.. 然后出去跪了二十天, 然后今天又开始看发现其实并不难理解   开个这个仅记录一下写过的题. HAOI 2011 B   这应该是莫比乌斯反演的模 ...

随机推荐

  1. JavaScript 作用域、命名空间及闭包

    变量作用域: 1.一个变量的作用域是程序源代码中定义这个变量的区域 2.在函数内声明的变量是局部变量,它只在该函数及其嵌套作用域里可见(js 函数可嵌套定义):不在任何函数内声明或在函数内不使用 va ...

  2. Mac OS Sierra如何打开任何来源

    我们知道在Mac升级到最新的Mac OS Sierra系统之后,随之而来的是第三方应用都无法打开,提示的是无法打开或扔进废纸篓.而在之前的版本系统中,我们知道在系统偏好设置-->安全性与隐私-- ...

  3. JSON库的使用研究(三)

    怎么选择JSON库? 从整体测试结果来看,总结如下: 用于序列化.反序列的功能,数量量小,吞吐量不大于10000每秒的,选择gson: 用于解析JSON的,还是用Fastjson吧,虽然听说坑很多. ...

  4. 解决Database returned an invalid datetime value. Are time zone definitions for your database installed?

    设定博客文章按照时间分层筛选出现问题 ret=Article.objects.filter(user=user).annotate(month=TruncMonth("create_time ...

  5. vue android低版本 白屏问题 你是不是用了Object.assign ??

    问题描述 在部分比较低版本的手机中,发现apk安装后白屏,但是大部分手机都能安装. 本人在使用android4.4时候,也是安装后打开白屏. 原因: 代码写法不兼容 this.user = Objec ...

  6. 给iPhone手机安装*.ipa

    首先手机连接电脑,打开 ITunes. 左上角点击文件,再点击添加到资料库. 找到你要安装的ipa点击选择打开 好了ipa已经添加进去后,你会看你你刚才添加进去的应用在列表内,点击左上角一个手机的图标 ...

  7. mysql 开发基础系列21 事务控制和锁定语句(下)

    1.  隐含的执行unlock tables 如果在锁表期间,用start transaction命令来开始一个新事务,会造成一个隐含的unlock tables 被执行,如下所示: 会话1 会话2 ...

  8. [NewLife.XCode]反向工程(自动建表建库大杀器)

    NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示 ...

  9. SQL 操作字符串

    SQL操作字符串相对来说比较难一点,现在总结几个常用的SQL 对字符串的操作: declare @dd nvarchar(12) set @dd='2015-03-13' print @dd decl ...

  10. mysql年初至今聚合

    年初至今聚合和滑动聚合类似,不同的地方仅在于统计的仅为当前一年的聚合.唯一的区别体现在下限的开始位置上.在年初至今的问题中,下限为该年的第一天,而滑动聚合的下限为N个月的第一天.因此,年初至今的问题的 ...