T1

\(\sum_{i=1}^N \sum_{j=1}^M [(i,j)=1]\)

\(f(d)=\sum_{i=1}^N \sum_{j=1}^M [(i,j)=d]\)

\(g(d)=\sum_{i=1}^N \sum_{i=1}^M [d|(i,j)]=\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor\)

\(g(n)=\sum_{n|d} f(d)\)

\(f(n)=\sum_{n|d} \mu(\frac{d}{n})g(d)\)

\(f(1)=\sum_{i=1}^{\min(N,M)} \mu(i)\lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{i} \rfloor\)

T2

\(\sum_{i=1}^N \sum_{j=1}^M (i,j)\)

\(f(d)=\sum_{i=1}^N \sum_{j=1}^M d[(i,j)=d]=\sum_{i=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} d\mu(i) \lfloor \frac{N}{id} \rfloor \lfloor \frac{M}{id} \rfloor\)

\(Ans=\sum_{d=1}^{\min(N,M)} f(d)=\sum_{d=1}^{\min(N,M)} \sum_{i=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} d\mu(i) \lfloor \frac{N}{id} \rfloor \lfloor \frac{M}{id} \rfloor\)

设\(w=id\)

\(Ans=\sum_{w=1}^{\min(N,M)} \sum_{d|w} d\mu(\frac{w}{d}) \lfloor \frac{N}{w} \rfloor \lfloor \frac{M}{w} \rfloor\)

\(\sum_{d|w} d\mu(\frac{w}{d})=\phi(w)\)显然是积性函数,线性筛后做下前缀和,离线\(\Theta(\min(N,M))\)

\(\sum_{w=1}^{\min(N,M)} \lfloor \frac{N}{w} \rfloor \lfloor \frac{M}{w} \rfloor\) 整除分块可以做到在线\(\Theta(\sqrt{N}+\sqrt{M})\)

多组询问下总复杂度\(\Theta(\min(N,M)+T(\sqrt{N}+\sqrt{M}))\)

T3

\(\sum_{i=1}^N \sum_{j=1}^M \frac{ij}{(i,j)}\)

\(f(d)=\sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ijd[(i,j)=1]=d \sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ij[(i,j)=1]\)

\(Ans=\sum_{d=1}^{\min(N,M)} f(d)\)

\(Ans=\sum_{d=1}^{\min(N,M)} d \sum_{i=1}^{\lfloor \frac{N}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{d} \rfloor} ij\sum_{n|(i,j)} \mu(n)\)

\(Ans=\sum_{d=1}^{\min(N,M)} d \sum_{n=1}^{\lfloor \frac{\min(N,M)}{d} \rfloor} n (\sum_{i=1}^{\lfloor \frac{N}{dn} \rfloor} i)n(\sum_{j=1}^{\lfloor \frac{M}{dn} \rfloor} j)\mu(n)\)

设\(w=dn\)

\(Ans=\sum_{w=1}^{\min(N,M)} (\sum_{i=1}^{\lfloor \frac{N}{w} \rfloor} i)(\sum_{j=1}^{\lfloor \frac{M}{w} \rfloor} j) w\sum_{n|w} n \mu(n)\)

线筛前缀和+整除分块

复杂度与上题相同

T4

\(\sum_{i=1}^N \sum_{j=1}^M d(ij)\)

\(\sum_{i=1}^N \sum_{j=1}^M \sum_{a|i} \sum_{b|j} [(a,b)=1]\)

$\sum_{i=1}^N \sum_{j=1}^M \lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{j} \rfloor[(i,j)=1] $

设\(w=(i,j)\)

\(\sum_{w=1}^{\min(N,M)} \mu(w) \sum_{i=1}^{\lfloor \frac{N}{w} \rfloor} \sum_{j=1}^{\lfloor \frac{M}{w} \rfloor} \lfloor \frac{N}{iw} \rfloor \lfloor \frac{M}{jw} \rfloor\)

整除分块+线筛前缀和

复杂度仍然与上题相同

Mobius反演的套路的更多相关文章

  1. Mobius 反演与杜教筛

    积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...

  2. Mobius反演学习

    这篇文章参考了许多资料和自己的理解. 先放理论基础. 最大公约数:小学学过,这里只提一些重要的公式: $·$若$a=b$,则$\gcd(a,b)=a=b$: $·$若$\gcd(a,b)=d$,则$\ ...

  3. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  4. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  5. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  6. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  7. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  8. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  9. Mobius 反演

    上次看莫比乌斯繁衍反演是一个月前,讲道理没怎么看懂.. 然后出去跪了二十天, 然后今天又开始看发现其实并不难理解   开个这个仅记录一下写过的题. HAOI 2011 B   这应该是莫比乌斯反演的模 ...

随机推荐

  1. 第87节:Java中的Bootstrap基础与SQL入门

    第87节:Java中的Bootstrap基础与SQL入门 前言复习 什么是JQ? : write less do more 写更少的代码,做更多的事 找出所有兄弟: $("div" ...

  2. Kali学习笔记30:身份认证与命令执行漏洞

    文章的格式也许不是很好看,也没有什么合理的顺序 完全是想到什么写一些什么,但各个方面都涵盖到了 能耐下心看的朋友欢迎一起学习,大牛和杠精们请绕道 实验环境: Kali机器:192.168.163.13 ...

  3. 简单读!tomcat源码(一)启动与监听

    tomcat 作为知名的web容器,很棒! 本文简单了从其应用命令开始拆解,让我们对他有清晰的了解,揭开神秘的面纱!(冗长的代码流水线,给你一目了然) 话分两头: 1. tomcat是如何启动的? 2 ...

  4. SpringBoot+Mybatis集成搭建

    本博客介绍一下SpringBoot集成Mybatis,数据库连接池使用alibaba的druid,使用SpringBoot微框架虽然集成Mybatis之后可以不使用xml的方式来写sql,但是用惯了x ...

  5. 意料之外,情理之中,Spring.NET 3.0 版本发布-

    意料之外,情理之中,Spring.NET 3.0 版本发布- 备受社区和企业开发者广泛关注的Spring.NET在上周发布了3.0版本,并且目前已经保持着持续的更新,让我们一起来看一看他究竟发布了哪些 ...

  6. 1 分钟教会你用 Spring Boot 发邮件

    Spring Boot 提供了一个发送邮件的简单抽象,使用的是下面这个接口. org.springframework.mail.javamail.JavaMailSender Spring Boot ...

  7. leetcode69 X的平方根的几种解法

    第一种自然就是调APi啦(手动滑稽) public int mySqrt(int x) { return (int)Math.sqrt(x); } 时间是52 ms,还超过了1/5的人呢 第二种 二分 ...

  8. Xamarin.Android 开发中遇到旋转屏幕错误

    错误信息 : System.NotSupportedException: Unable to find the default constructor on type App5.MyFragment. ...

  9. [NewLife.XCode]实体类详解

    NewLife.XCode是一个有10多年历史的开源数据中间件,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和运行日志来进行深入分析,蕴含 ...

  10. github代码clone加速

    这阵子想看看开源项目 MyBatis 的源码,结果使用 git 的 clone 命令怎么也 clone 不下来,我以为是网速慢,上 Google 一搜,原来 Github 的域名被 DNS 污染了,我 ...