【LGR-052】洛谷9月月赛II(加赛)
题解:
没打。。。
ab题满世界都过了应该没什么意思
c题是个比较有意思的思维题(先看了题解才会的。。。)
我们考虑这么一件事情
没钥匙的人出门后
门一定是开着的
他进来的时候,门一定是开着的
其他时候,一定门能关着比较好
但是这个东西并不是很好维护,因为可能重复算
我们考虑重新排个序
我们把a[]在b[]前面的那个排在他前面
这样我们只需要记录一下上一个取了没有就可以了
感觉说出来不是很好理解这个东西。。。
d题还是个有点难度的数据结构题
一件比较显然的事情是我们对a的操作等价于是要
找当前x修改后是不是前缀最大值,以及他能延伸到哪(这个权值线段树显然可以维护)
然后就变成了区间覆盖成一个值了
然后 刚开始就想错了。。。
刚开始想的是去考虑这一段的值是怎么通过原先值变化的
其实这样反而不好做
直接去暴力统计现在的值
那么我们要知道的其实就是 当前区间>k的数的个数以及<k的数的乘积
这玩意我好像只会树套树或者cdq分治+排序+线段树。。。(写起来挺烦的啊)
于是复杂度就是nlog^2n了
不知道正解是怎么玩的。。。
代码:
c:
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const int N=;
const int INF=1e9;
struct re{
int a,b,c,pos;
}a[N],b[N],c1[N],c2[N],p[N];
int pre[N],pos[N],x1[N],x2[N],f[N][N][];
bool tt[N];
bool cmp(re x,re y)
{
return x.b<y.b;
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
ios::sync_with_stdio(false);
int n,m;
cin>>n>>m;
rep(i,,n)
{
cin>>a[i].a>>a[i].b; a[i].pos=i;
b[i*-].a=i*-; b[i*-].b=a[i].a;
b[i*].a=i*; b[i*].b=a[i].b;
}
sort(a+,a+n+,cmp);
sort(b+,b+*n+,cmp);
rep(i,,n) pos[a[i].pos]=i;
rep(i,,n*)
{
if (b[i].a%==&&b[i-].a%==)
pre[b[i].a/]=(b[i-].a+)/;
if (b[i].a%==) x2[b[i].a/]=b[i].b-b[i-].b;
if (b[i].a%==) x1[(b[i].a+)/]=b[i+].b-b[i].b;
}
int cnt=;
rep(i,,n)
if (!tt[i])
{
int x=i;
p[++cnt].a=a[x].a; p[cnt].b=a[x].b; p[cnt].c=; tt[i]=;
if (pos[pre[a[x].pos]]!=x)
c1[cnt].a=x1[a[x].pos],c1[cnt].b=x2[a[x].pos];
else
c1[cnt].a=x1[a[x].pos],c1[cnt].b=;
while (pos[pre[a[x].pos]]&&pos[pre[a[x].pos]]!=x)
{
x=pos[pre[a[x].pos]];
tt[x]=;
p[++cnt].a=a[x].a; p[cnt].b=a[x].b; p[cnt].c=;
c1[cnt].a=x1[a[x].pos]; c1[cnt].b=x2[a[x].pos];
}
}
rep(i,,n)
rep(j,,m)
{
f[i][j][]=f[i][j][]=INF;
if (p[i].c)
{
if (j) f[i][j][]=min(f[i][j][],min(f[i-][j-][],f[i-][j-][]));
f[i][j][]=min(f[i][j][],f[i-][j][]+c1[i].b);
f[i][j][]=min(f[i][j][],f[i-][j][]+c1[i].b+c1[i].a);
} else
{
if (j) f[i][j][]=min(f[i][j][],min(f[i-][j-][],f[i-][j-][]));
f[i][j][]=min(f[i][j][],f[i-][j][]+c1[i].b+c1[i].a);
f[i][j][]=min(f[i][j][],f[i-][j][]+c1[i].b+c1[i].a);
}
}
cout<<min(f[n][m][],f[n][m][]);
return ;
}
【LGR-052】洛谷9月月赛II(加赛)的更多相关文章
- 【LGR-054】洛谷10月月赛II
[LGR-054]洛谷10月月赛II luogu 成功咕掉Codeforces Round #517的后果就是,我\(\mbox{T4}\)依旧没有写出来.\(\mbox{GG}\) . 浏览器 \( ...
- 洛谷10月月赛II题解
[咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...
- 洛谷9月月赛II 赛后瞎写
看错比赛时间了....结果发现的时候已经开始了半个小时,并且当时正准备睡午觉qwq 于是就水了个t1就 去睡 跑了 T2 写着写着然后看了一发评讲被辣鸡思路给绕了进去最后发现自己宛若一个智障 类似桶的 ...
- 洛谷 4933 洛谷10月月赛II T2 大师
[题解] f[i][j]表示最后一个数为h[i],公差为j的等差数列的个数.n方枚举最后一个数和倒数第二个数转移即可.注意公差可能为负数,需要移动为正数再作为下标. #include<cstdi ...
- 洛谷 4932 洛谷10月月赛II T1 浏览器
[题解] x xor y的结果在二进制下有奇数个1,等价于x与y在二进制下的1的个数之和为奇数,因为x xor y减少的1的个数一定是偶数(两个数这一位都为1,xor的结果为0,减少了2个1) 那么答 ...
- 洛谷10月月赛II
#A: P4924 [1007]魔法少女小Scarlet 这道题考了矩阵旋转 其实很考验推公式的能力和代码能力 这里有个小技巧 可以设(x, y)为原点,然后去推公式,然后实际操作中横坐标加上x,纵坐 ...
- 【LGR-061】洛谷10月月赛 II & X Round 4 Div.1&Div 2
X Round的题目质量还是一如既往的高 然而每次周末我都要写作业没法用心打233主要是被陈指导放了鸽子 占坑代填(最近坑开的有点多)
- 【CSGRound2】逐梦者的初心(洛谷11月月赛 II & CSG Round 2 T3)
题目描述# 给你一个长度为\(n\)的字符串\(S\). 有\(m\)个操作,保证\(m≤n\). 你还有一个字符串\(T\),刚开始为空. 共有两种操作. 第一种操作: 在字符串\(T\)的末尾加上 ...
- [LGR-054]洛谷10月月赛II
浏览器 结论popcnt(x^y)和popcnt(x)+popcnt(y)的奇偶性相同. 然后就是popcnt为奇数的乘为偶数的.预处理一下\(2^{16}\)次方以内的popcnt,直接\(O(1) ...
随机推荐
- html单选按钮用jQuery中prop()方法设置
模拟单选按钮时用jQuery,prop方法来设置. 赋默认选中值:$("#" + id).find("input:radio[value='" + state ...
- List<> of struct with property. Cannot change value of property. why?
这个返回如下错误:"Cannot modify the return value of 'System.Collections.Generic.List<MyStruct>.th ...
- 016_把普通用户免秘钥加入root用户的几种方式
一.第一种方式. (1) [root@infra-jyallkv-tikv-pps-7 ~]# tail /etc/sudoers## Allows members of the users grou ...
- VI和VIM
linux下vi.VIM命令大全 进入vi的命令 vi filename :打开或新建文件,并将光标置于第一行首 vi +n filename :打开文件,并将光标置于第n行首 vi + file ...
- 编译和运行dubbo-admin管理平台
下载 Github上下载最新的dubbo源码包并解压 修改ZooKeeper相关的配置 打开dubbo-admin/src/main/webapp/WEB-INF下的dubbo.p ...
- Django 自定义模型管理器类2个应用场景
class BookManager(models.Manager): # 改变查询集的结果集 def all(self): books = super().all() # QuerySet books ...
- ADO.NET连接字符串大全---各种数据库的连接字符串
ADO.NET连接字符串大全 ADO.NET连接字符串 名称 ADO.NET连接字符串 说明 ADO.NET连接字符串:SQL Server,SQL Server 2005,ACCESS,Oracle ...
- Mysql8.0安装步骤
Mysql8.0安装步骤 2018年05月10日 14:39:05 93年的香槟 阅读数:19628 标签: mysql 更多 个人分类: 数据库 版权声明:本文为博主原创文章,未经博主允许不得转 ...
- bat如何提取文本指定行的内容
背景:使用CTS框架运行完测试后,会在logs中生成devices_log和host_log,在results中生成相应的结果(报告).根据报告信息我们可以得知失败的用例,但是却不能知道为什么用例会失 ...
- day11 函数的位置形参,位置实参,可变长位置形参,关键字形参
今天内容 函数的参数详解 形参与实参 形参及形式参数,就是在定义函数是括号中指定的参数(本质就是一个名字) 实参及实际参数,指的是在调用函数是传入的参数)(本质就是一个值) 在调用函数是就会把形参和实 ...