light1341 唯一分解定理

一定要先打表素数,然后进行分解,直接分解是会t的
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll long long
using namespace std;
int const MAX = 1e6 + ;
int p[MAX];
bool u[MAX];
int num, cnt;
ll a, b, tmp; void get_prime()
{
memset(u, false, sizeof(u));
for(int i = ; i <= sqrt(MAX); i++)
if(!u[i])
for(int j = i * i; j <= MAX; j += i)
u[j] = true;
for(int i = ; i <= MAX; i++)
if(!u[i])
p[cnt ++] = i;
} void cal()
{
for(int i = ; i < cnt && p[i] <= sqrt(tmp); i++)
{
int cc = ;
while(tmp % p[i] == )
{
cc ++;
tmp /= p[i];
}
num *= (cc + ); }
if(tmp > ) //如果tmp不能被整分,说明还有一个素数是它的约数,此时cc=1
num *= ;
} int main()
{
int T;
scanf("%d", &T);
cnt = ;
get_prime();
for(int ca = ; ca <= T; ca++)
{
scanf("%lld %lld", &a, &b);
if(a < b * b)
printf("Case %d: 0\n", ca);
else
{
num = ;
tmp = a;
cal();
num /= ;
for(int i = ; i < b; i++)
if(a % i == )
num --;
printf("Case %d: %d\n", ca, num);
}
}
}
light1341 唯一分解定理的更多相关文章
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- uva10375 Choose and Divide(唯一分解定理)
uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
- UVA 10375 Choose and divide【唯一分解定理】
题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...
- 唯一分解定理 poj 1365
一行代表一个数 x 给你底数和指数 求x-1的唯一分解定理的底数和指数 从大到小输出 #include<stdio.h> #include<string.h> #include ...
- UVA294DIvisors(唯一分解定理+约数个数)
题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...
- POJ1845Sumdiv(求所有因子和 + 唯一分解定理)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 17387 Accepted: 4374 Descripti ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
随机推荐
- 均方根误差(RMSE)与平均绝对误差(MAE)
RMSE Root Mean Square Error,均方根误差 是观测值与真值偏差的平方和与观测次数m比值的平方根. 是用来衡量观测值同真值之间的偏差 MAE Mean Absolute Erro ...
- Springboot引入多个yml方法
SpringBoot默认加载的是application.yml文件,所以想要引入其他配置的yml文件,就要在application.yml中激活该文件 定义一个application-resource ...
- Oracle Audit 审计功能的认识与使用
1.Audit的概念 Audit是监视和记录用户对数据库进行的操作,以供DBA进行问题分析.利用Audit功能,可以完成以下任务: 监视和收集特定数据库活动的数据.例如管理员能够审计哪些表被更新,在某 ...
- go语言time包的学习(Time,Location,Duration,Timer,Ticker)
package main; import ( "time" "fmt" ) func main() { //time.Time代 ...
- linux 用户空间获得纳秒级时间ns【转】
转自:https://www.cnblogs.com/kekukele/p/3662816.html 一.引言 我们在测试程序的性能的时候往往需要获得ns级的精确时间去衡量一个程序的性能,下面介绍下l ...
- 设计模式C++学习笔记之一(Strategy策略模式)
无意中,从网上下到一本电子书<24种设计模式介绍与6大设计原则>,很好奇这里有24种设计模式,印象中GOF写的<设计模式>(Design Patterns),好像只有23种吧. ...
- tomcat 嵌入式
背景 开源世界真是有意思,竟然还有这种玩法.以前一直想bs程序如何像cs程序作为安装包形式,这个就是个解决方案. 知识点 将tomcat嵌入到主程序中进行运行,而不是像以前将一个web项目copy到t ...
- 天宝MB-Two:无法打开web登陆界面
在浏览器中访问http://192.168.1.100,正常是打开MB-Two芯片的web 登陆界面,但是事与愿违,打开的是帮助界面. 解决办法: 用串口调试助手,波特率默认是115200,连接过去. ...
- 2)django-请求生命周期
1)下图是django请求生命周期 2)详细例子
- Python-Django-Ajax进阶
ajax上传文件: <h2>基于ajax上传文件</h2><p>名字 <input type="text" id="filena ...