《剑指offer》斐波那契数列
题目一:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。n<=39
思路:
递归方式:return n<=0 ? 0 : n+fib(n-1)
递归是由于函数调用自身,有时间和空间的消耗,每次自身的调用都需要在内存栈中分配空间以保存参数,返回地址和变量,而且栈中压入和弹出数据都需要时间,效率不高,如果数据过大,会导致栈内存溢出。但是代码简洁。
循环方式:O(n)时间内的操作
循环是通过设置计算的初始值和终止条件在一个范围内重复运算。采用迭代的方式,从头计算后面的值。
C++ Code:
class Solution {
public:
int Fibonacci(int n) { //采用循环的方式时间为O(n)
int res[] = {,}; //初始的两个值【0,1】
if (n < ){ //当n小于2直接返回
return res[n];
}else{
int fibOne = ;
int fibTwo = ;
int fib = ;
for (unsigned int i = ;i<=n;i++){
fib = fibOne + fibTwo;
fibOne = fibTwo;
fibTwo = fib;
}
return fib;
}
}
};
Python Code:
# -*- coding:utf-8 -*-
class Solution:
def Fibonacci(self, n): #采用循环的方式计算
# write code here
res = [0,1] #n为0和1时候为【0,1】
if n < 2:
return res[n] #如果n小于2直接返回
else: #如果n大于2,采用叠加的方式计算
fibOne = 0
fibTwo = 1
fib = 0
for i in range(2,n+1):
fib = fibOne + fibTwo #依次计算前面两个值,最终返回
fibOne = fibTwo
fibTwo = fib
return fib
总结:
本题延伸,比如跳台阶问题,或者汉诺塔问题,都是采用递归方式。
如果需要重复性的多次计算相同的问题,通常可以采用递归或者循环两种方式。
题目二:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路:
f(n) = f(n-1)+f(n-2)
Python Code:
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
# write code here
res = [0,1]
if number < 2:
return res[number]
one = 0
two = 1
for i in range(number+1):
one,two = two,one+two
return one
《剑指offer》斐波那契数列的更多相关文章
- 剑指Offer 斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public ...
- 剑指Offer——斐波那契数列
题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 分析: 递归解法肯定相当耗时. 因为当n=4时,程序是这样子递归运算的:Fibonacci( ...
- 用js刷剑指offer(斐波那契数列)
牛客网链接 下面介绍一下什么是斐波那契数列 js代码 知道了通项公式,那代码就非常简单了 function Fibonacci(n) { // write code here let pre = 1 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- 剑指offer7: 斐波那契数列第n项(从0开始,第0项为0)
1. 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 2. 思路和方法 斐波那契数列(Fibonacci sequen ...
- 剑指offer--4.斐波那契数列
int最大范围(有符号情况下,从第0项0开始)能取到第46项1836311903,47项溢出 时间限制:1秒 空间限制:32768K 热度指数:473928 题目描述 大家都知道斐波那契数列,现在要求 ...
- 剑指Offer-7.斐波那契数列(C++/Java)
题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...
- 剑指Offer07 斐波那契数列
/************************************************************************* > File Name: 07_Fibona ...
- [剑指Offer]10-斐波那契数列(循环)-Java
题解 使用循环,时间复杂度O(n). 相关 跳台阶:f(n)=f(n-1)+f(n-2) 变态跳台阶:f(n)=2*f(n-1) 矩形覆盖:f(n)=f(n-1)+f(n-2) 全部用循环代替递归,使 ...
- 剑指offer_斐波那契数列
package solution; public class Fibonacci { /* * f(n) = f(n-1) + f(n-2) n>1 * f(0) = 0 * f(1) = 1 ...
随机推荐
- jq的dom操作
代码可以在该网址测试:www.w3school.com.cn/tiy/t.asp?f=jquery_manipulation_detach_move attr 使用函数来设置属性/值:函数参数为选择器 ...
- 开源RPC Jupiter
ref https://github.com/fengjiachun/doc/tree/master/netty https://budairenqin.iteye.com/ https://blog ...
- JavaWeb(一)Servlet
一.Servlet简介 Servlet 是J2EE的一个规范,为Java提供统一的web应用规范. 广义的Servlet 是指实现了servlet的类 二.Servlet工作原理 1.原理: 一个ht ...
- Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)
题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...
- linux系统 之 git
1,git是啥? 最流行的分布式版本控制系统,在高度易用的同时,仍然保留着初期设定的目标.它的速度飞快,极其适合管理大项目,它还有着令人难以置信的非线性分支管理系统,可以应付各种复杂的项目开发需求. ...
- Java类锁和对象锁
一.类锁和对象锁 二.使用注意 三.参考资料 一.类锁和对象锁 类锁:在代码中的方法上加了static和synchronized的锁,或者synchronized(xxx.class) 对象锁:在代码 ...
- 【转】Win10下python3和python2多版本同时安装并解决pip共存问题
[转]Win10下python3和python2多版本同时安装并解决pip共存问题 特别说明,本文是在Windows64位系统下进行的,32位系统请下载相应版本的安装包,安装方法类似. 使用pytho ...
- C++设计模式之工厂模式(1)
关于设计模式的作用: “帮助我们将应用组织成容易了解,容易维护,具有弹性的架构,建立可维护的OO系统,要诀在于随时想到系统以后可能需要的变化以及应付变化的原则.” 具体可参考:https://www. ...
- MD5 与 SHA 在 Delphi 中函数实现,加密密码
MD5 与 SHA 在 Delphi 中函数实现. 为了加密密码,必须使用一种算法,查询资料,比较好的方法是使用:MD5等算法,参考:Delphi XE8 支持MD5 第一种方式是:引用 System ...
- JavaScript中的this -- 好像很有道理版
函数调用 首先需要从函数的调用开始讲起. JS(ES5)里面有三种函数调用形式: func(p1, p2) obj.child.method(p1, p2) func.call(context, p1 ...