堆排、python实现堆排
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),是不稳定排序
堆排序中的堆有大顶堆、小顶堆两种。他们都是完全二叉树

将该堆按照排序放入列表

1. 大顶堆:
所有的父节点的值都比孩子节点大,叶子节点值最小。root 根节点是第一个节点值最大
2. 小顶堆:
和大顶堆相反,所有父节点值,都小于子节点值,root 根节点是 第一个节点值最小
- 基本思路:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。可称为有序区,然后将剩余n-1个元素重新构造成一个堆,估且称为堆区(未排序)。这样会得到n个元素的次小值。重复执行,有序区从:1--->n,堆区:n-->0,便能得到一个有序序列了
- 在构造有序堆时,开始时只需要扫描一半的元素(所有父节点)(length/2-1 --> 0)
因为只有他们才有子节点:3-->2 -->1 -->0

1. 从最后一个父节点开始,将父节点、他所有的子节点中的最大值交换到父节点。父节点:3

2. 将倒数第二个父节点同理交换,父节点:2

3. 父节点:1

4. 根节点:0

5. 注意很重要:务必注意-承接第3步。
假设根节点值为:10, 当他和两个子节点70, 80,

父节点和两子节点中的大的(80)交换后位于父节点2:原来80的位置。

可是他还有子节点,且子节点中的值比根节点大,那就还需要以他为父节点构造一次,与子节点6 值为20交换一次

同理在其他所有父节点的构造中都需要判断调整
忽略第五步。构造好的的大顶堆如下:

基本思路:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。可称为有序区,然后将剩余n-1个元素重新构造成一个堆,估且称为堆区(未排序)。这样会得到n个元素的次小值。重复执行,有序区从:1--->n,堆区:n-->0,便能得到一个有序序列了
每次将堆顶(根节点)最的的元素和堆尾列表最后一个元素交换,80 和40交换
即上面说的堆区(未排序):n-->0最大元素(根节点),和有序区从:1--->n,最后一个元素交换

按照上面原理继续排序,70, 30 交换。然后调整堆

堆顶元素60尾元素20交换后-->调整堆

最后结果

- 现在排序这么一个序列:list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
"""
堆排序 heap_sort
4
/ \
7 0
/ \ / \
9 1 5 3
/ \ /
3 2 6
list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
"""
def swap(data, root, last):
data[root], data[last] = data[last], data[root]
#调整父节点 与孩子大小, 制作大顶堆
def adjust_heap(data, par_node, high):
new_par_node = par_node
j = 2*par_node +1 #取根节点的左孩子, 如果只有一个孩子 high就是左孩子,如果有两个孩子 high 就是右孩子
while j <= high: #如果 j = high 说明没有右孩子,high就是左孩子
if j < high and data[j] < data[j+1]: #如果这儿不判断 j < high 可能超出索引
# 一个根节点下,如果有两个孩子,将 j 指向值大的那个孩子
j += 1
if data[j] > data[new_par_node]: #如果子节点值大于父节点,就互相交换
data[new_par_node], data[j] = data[j], data[new_par_node]
new_par_node = j #将当前节点,作为父节点,查找他的子树
j = j * 2 + 1
else:
# 因为调整是从上到下,所以下面的所有子树肯定是排序好了的,
#如果调整的父节点依然比下面最大的子节点大,就直接打断循环,堆已经调整好了的
break
# 索引计算: 0 -->1 --->....
# 父节点 i 左子节点:2i +1 右子节点:2i +2 注意:当用长度表示最后一个叶子节点时 记得 -1
# 即 2i + 1 = length - 1 或者 2i + 2 = length - 1
# 2i+1 + 1 = length 或 2i+2 + 1 = length
# 2(i+1)=length 或 2(i+1)+1 = length
# 设j = i+1 则左子节点(偶数):2j = length 和 右子节点(基数):2j+1 = length
# 2j//2 = j == (2j+1)//2 这两个的整除是一样的,所以使用length//2 = j 然后 i + 1 = j
# i = j-1 = length//2 -1 #注意左子节点:2i+1 //2 =i 而右子节点:(2i+2)//2 = i+1
# 从第一个非叶子节点(即最后一个父节点)开始,即 list_.length//2 -1(len(list_)//2 - 1)
# 开始循环到 root 索引为:0 的第一个根节点, 将所有的根-叶子 调整好,成为一个 大顶堆
def heap_sort(lst):
"""
根据列表长度,找到最后一个非叶子节点,开始循化到 root 根节点,制作 大顶堆
:param lst: 将列表传入
:return:
"""
length = len(lst)
last = length -1 #最后一个元素的 索引
last_par_node = length//2 -1
while last_par_node >= 0:
adjust_heap(lst, last_par_node, length-1)
last_par_node -= 1 #每调整好一个节点,从后往前移动一个节点
# return lst
while last > 0:
#swap(lst, 0, last)
lst[0], lst[last] = lst[last],lst[0]
# 调整堆让 adjust 处理,最后已经排好序的数,就不处理了
adjust_heap(lst, 0, last-1)
last -= 1
return lst #将列表返回
if __name__ == '__main__':
list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
heap_sort(list_)
print(list_)
#最后结果为:
[0, 1, 2, 3, 3, 4, 5, 6, 7, 9]
堆排、python实现堆排的更多相关文章
- Python的快排应有的样子
快排算法 简单来说就是定一个位置然后,然后把比它小的数放左边,比他大的数放右边,这显然是一个递归的定义,根据这个思路很容易可以写出快排的代码 快排是我学ACM路上第一个让我记住的代码,印象很深 ...
- 二叉堆 及 大根堆的python实现
Python 二叉堆(binary heap) 二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树.二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子 ...
- Python实现快排
Python实现快排 def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x ...
- 堆的python实现及其应用
堆的概念 优先队列(priority queue)是一种特殊的队列,取出元素的顺序是按照元素的优先权(关键字)大小,而不是进入队列的顺序,堆就是一种优先队列的实现.堆一般是由数组实现的,逻辑上堆可以被 ...
- Python - 二叉树, 堆, headq 模块
二叉树 概念 二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树), 或者由一个根结点和两棵互不相交的.分别称为根结点的左子树和右子树组成. 特点 每个结点最多有两颗子树,所 ...
- Python实现堆
堆 (heap) 是一种经过排序的完全二叉树,其中任一非叶子节点的值均不大于(或不小于)其左孩子和右孩子节点的值. 注:定义来自百度百科. 堆,又被为优先队列(priority queue).尽管名为 ...
- 【转载】java项目中经常碰到的内存溢出问题: java.lang.OutOfMemoryError: PermGen space, 堆内存和非堆内存,写的很好,理解很方便
Tomcat Xms Xmx PermSize MaxPermSize 区别 及 java.lang.OutOfMemoryError: PermGen space 解决 解决方案 在 catalin ...
- 干货:JVM 堆内存和非堆内存
堆和非堆内存 按照官方的说法:"Java 虚拟机具有一个堆(Heap),堆是运行时数据区域,所有类实例和数组的内存均从此处分配.堆是在 Java 虚拟机启动时创建的."" ...
- 堆排序(大顶堆、小顶堆)----C语言
堆排序 之前的随笔写了栈(顺序栈.链式栈).队列(循环队列.链式队列).链表.二叉树,这次随笔来写堆 1.什么是堆? 堆是一种非线性结构,(本篇随笔主要分析堆的数组实现)可以把堆看作一个数组,也可以被 ...
随机推荐
- 高通平台如何使用QPST抓DUMP
一 :确认手机状态 手机系统死机白屏后,使用USB线 连接手机和计算机.打开计算机设备管理器 ,当其中与手机相关的端口只有DIAG 口 项(9006端口)时,表明手机处于DUMP 模式,可以抓DUMP ...
- UnicodeEncodeError: 'ascii' codec can't encode characters in position
UnicodeEncodeError: 'ascii' codec can't encode characters in position python运行时出现这个错误,解决方法如下: 加入如下语句 ...
- js获取请求地址后面带的参数
浏览器输入页面地址的时候在后面带有请求参数, 页面加载后需要获取携带的参数, 可以使用js, 在页面加载js的时候获取参数 http://localhost:8080/demo/index.html? ...
- Lingo求解线性规划案例1——生产计划问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 说明: Lingo版本: 某工厂明年根据合同,每个季度末 ...
- 【项目 · Wonderland】立项报告
[软件工程实践 · 团队项目] 第二次作业 团 队 作 业 原 文:http://www.cnblogs.com/andwho/p/7598662.html Part 0 · 简 要 目 录 Part ...
- CSS 简介、 选择器、组合选择器
#CSS 装饰器引入<!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...
- 【Linux基础】awk命令
1.awk命令说明 (1)awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息 (2)awk处理过程: 依次对每一行进行处理,然后输出 ...
- 【Git】Git pull 强制覆盖本地文件
git fetch --all git reset --hard origin/master git pull 备注: git fetch 只是下载远程的库的内容,不做任何的合并 git reset ...
- C - 继续畅通工程 最小生成树
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经 ...
- Harbor是什么
第一次听到这个名字应该是2016年初的时候,那是在容器技术已经兴起的,各个容器管理平台正处于群雄逐鹿的时候,mesos.kubernetes.swarm等被国内外各个厂商用来作为容器的管理系统.这个时 ...