题目:

此为平衡树系列第一道:普通平衡树您需要写一种数据结构,来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

n<=100000 所有数字均在-107到107内。

输入样例:

10
1 106465
4 1
1 317721
1 460929
1 644985
1 84185
1 89851
6 81968
1 492737
5 493598
输出样例:

106465
84185
492737

变量声明:size[x],以x为根节点的子树大小;ls[x],x的左儿子;rs[x],x的右子树;r[x],x节点的随机数;v[x],x节点的权值。

root,树的总根;tot,树的大小。

非旋转treap不同于旋转treap需要靠旋转来维护平衡树的性质,他的操作可以用简单暴力来形容——只有合并和断裂两个操作。他不但有treap的优良性质,还有许多优点:支持可持久化和区间操作,常数比splay小。

下面介绍一下非旋转treap的这两个操作:

1.断裂

就是去掉一条边,把treap拆分成两棵树,对于区间操作可以进行两次断裂来分割出一段区间再进行操作。

以查找value为例,从root往下走,如果v[x]>value,那么下一步走ls[x],之后的点都比x小,把x接到右树上,下一次再接到右树上的点就是x的左儿子。

v[x]<=value与上述类似,在这里不加赘述。

void split(int x,int &lroot,int &rroot,int val)
{
if(!x)
{
lroot=rroot=0;
return ;
}
if(v[x]<=val)
{
lroot=x;
split(rs[x],rs[lroot],rroot,val);
}
else
{
rroot=x;
split(ls[x],lroot,ls[rroot],val);
}
up(x);
}

2.合并

就是把断裂开的树合并起来,因为要维护堆的性质所以按可并堆来合并。

void merge(int &x,int a,int b)
{
if(!a||!b)
{
x=a+b;
return ;
}
if(r[a]<r[b])
{
x=a;
merge(rs[x],rs[a],b);
}
else
{
x=b;
merge(ls[x],a,ls[b]);
}
up(x);
}

为了方便删除,所以建议把相同权值的点分开来加入树中,不要都放在同一个点。

非旋转treap代码比较短(为了清晰我写的比较长qwq)。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std;
int INF=1000000000;
int n;
int opt,x;
int r[100010];
int ls[100010];
int rs[100010];
int size[100010];
int v[100010];
int root;
int tot;
void up(int x)
{
size[x]=size[ls[x]]+size[rs[x]]+1;
}
void build(int &x,int val)
{
tot++;
size[tot]=1;
r[tot]=rand();
v[tot]=val;
ls[tot]=rs[tot]=0;
x=tot;
}
void merge(int &x,int a,int b)
{
if(!a||!b)
{
x=a+b;
return ;
}
if(r[a]<r[b])
{
x=a;
merge(rs[x],rs[a],b);
}
else
{
x=b;
merge(ls[x],a,ls[b]);
}
up(x);
}
void split(int x,int &lroot,int &rroot,int val)
{
if(!x)
{
lroot=rroot=0;
return ;
}
if(v[x]<=val)
{
lroot=x;
split(rs[x],rs[lroot],rroot,val);
}
else
{
rroot=x;
split(ls[x],lroot,ls[rroot],val);
}
up(x);
}
void insert_sum(int val)
{
int x=0;
int y=0;
int z=0;
build(z,val);
split(root,x,y,val);
merge(x,x,z);
merge(root,x,y);
}
void delete_sum(int val)
{
int x=0;
int y=0;
int z=0;
split(root,x,y,val);
split(x,x,z,val-1);
merge(z,ls[z],rs[z]);
merge(x,x,z);
merge(root,x,y);
}
void ask_rank(int val)
{
int x=0;
int y=0;
split(root,x,y,val-1);
printf("%d\n",size[x]+1);
merge(root,x,y);
}
void ask_sum(int x,int num)
{
while(size[ls[x]]+1!=num)
{
if(num<=size[ls[x]])
{
x=ls[x];
}
else
{
num-=(size[ls[x]]+1);
x=rs[x];
}
}
printf("%d\n",v[x]);
}
void ask_front(int val)
{
int x=0;
int y=0;
split(root,x,y,val-1);
if(size[x]==0)
{
printf("0\n");
}
else
{
ask_sum(x,size[x]);
}
merge(root,x,y);
}
void ask_back(int val)
{
int x=0;
int y=0;
split(root,x,y,val);
ask_sum(y,1);
merge(root,x,y);
}
int main()
{
srand(16);
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&opt,&x);
if(opt==1)
{
insert_sum(x);
}
else if(opt==2)
{
delete_sum(x);
}
else if(opt==3)
{
if(tot==0)
{
printf("0\n");
}
else
{
ask_rank(x);
}
}
else if(opt==4)
{
if(tot==0)
{
printf("0\n");
}
else
{
ask_sum(root,x);
}
}
else if(opt==5)
{
if(tot==0)
{
printf("0\n");
}
else
{
ask_front(x);
}
}
else if(opt==6)
{
if(tot==0)
{
printf("0\n");
}
else
{
ask_back(x);
}
}
}
return 0;
}

BZOJ3224普通平衡树——非旋转treap的更多相关文章

  1. BZOJ3223文艺平衡树——非旋转treap

    此为平衡树系列第二道:文艺平衡树您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 ...

  2. 4923: [Lydsy1706月赛]K小值查询 平衡树 非旋转Treap

    国际惯例的题面:这种维护排序序列,严格大于的进行操作的题都很套路......我们按照[0,k],(k,2k],(2k,inf)分类讨论一下就好.显然第一个区间的不会变化,第二个区间的会被平移进第一个区 ...

  3. 【bzoj3224】Tyvj 1728 普通平衡树 01Trie姿势+平衡树的四种姿势 :splay,旋转Treap,非旋转Treap,替罪羊树

    直接上代码 正所谓 人傻自带大常数 平衡树的几种姿势:  AVL Red&Black_Tree 码量爆炸,不常用:SBT 出于各种原因,不常用. 常用: Treap 旋转 基于旋转操作和随机数 ...

  4. 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)

    在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...

  5. BZOJ3729Gty的游戏——阶梯博弈+巴什博弈+非旋转treap(平衡树动态维护dfs序)

    题目描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动到这个节点先手是否有必胜策略.gt ...

  6. [bzoj3196][Tyvj1730]二逼平衡树_树套树_位置线段树套非旋转Treap/树状数组套主席树/权值线段树套位置线段树

    二逼平衡树 bzoj-3196 Tyvj-1730 题目大意:请写出一个维护序列的数据结构支持:查询给定权值排名:查询区间k小值:单点修改:查询区间内定值前驱:查询区间内定值后继. 注释:$1\le ...

  7. 关于非旋转treap的学习

    非旋转treap的操作基于split和merge操作,其余操作和普通平衡树一样,复杂度保证方式与旋转treap差不多,都是基于一个随机的参数,这样构出的树树高为\(logn\) split 作用:将原 ...

  8. [NOIP]2017列队——旋转treap/非旋转treap

    Sylvia 是一个热爱学习的女孩子.  前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia所在的方阵中有n × m名学生,方阵的行数为 n,列数为m.  为了便 ...

  9. 旋转/非旋转treap的简单操作

    treap(树堆) 是在二叉搜索树的基础上,通过维护随机附加域,使其满足堆性质,从而使树相对平衡的二叉树: 为什么可以这样呢? 因为在维护堆的时候可以同时保证搜索树的性质: (比如当一棵树的一个域满足 ...

随机推荐

  1. Omi教程-组件通讯攻略大全

    组件通讯 Omi框架组建间的通讯非常遍历灵活,因为有许多可选方案进行通讯: 通过在组件上声明 data-* 传递给子节点 通过在组件上声明 data 传递给子节点 (支持复杂数据类型的映射) 父容器设 ...

  2. Python_生成器函数进阶_39

    def generator(): print(123) content = yield 1 #content接收的是send传的值 print('=======',content) print(456 ...

  3. iOS- 利用AFNetworking(AFN) - 实现文件断点下载

    https://www.cnblogs.com/qingche/p/3500746.html 1. 定义一个全局的AFHttpClient:包含有 1> baseURL 2> 请求 3&g ...

  4. mysql_查的小理解

    show create table employee; 对这个语句的小理解: 顿悟呀,之前一直不太理解这条语句,现在忽然觉得明朗起来.他就是展示创建这个表格时的SQL语句.执行上述代码之后结果如下: ...

  5. java总结:字符串切割

    java中String.split()用法 在java.lang包中有String.split()方法,返回是一个数组.1.“.”和“|”都是转义字符,必须得加"\\"; 所以如果 ...

  6. Azure系列2.1.10 —— CloudBlobClient

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  7. [转帖]nginx配置ssl加密(单/双向认证、部分https)

    nginx配置ssl加密(单/双向认证.部分https) https://segmentfault.com/a/1190000002866627   nginx下配置ssl本来是很简单的,无论是去认证 ...

  8. rem 自适应、整体缩放

    html{ font-size: calc(100vw/7.5); } 说明: 100vw是设备的宽度,除以7.5可以让1rem的大小在iPhone6下等于100px. 若是低版本的设备不支持rem, ...

  9. MyBatis的demo

    把以前写的关于mybatis的demo放在这边,以便查看. 目录结构: package com.test.mybatis.util; import java.io.IOException; impor ...

  10. 建议3---理解Python与C语言的不同之处

    我们都知道,Python的底层是用C语言实现的,但切忌用C语言的思维和风格来编写Python代码.Python与其他语言有很多不同,以下来进行简单的分析: (1)"缩进"与“{}” ...