解决TensorFlow程序无限制占用GPU
今天遇到一个奇怪的现象,使用tensorflow-gpu的时候,出现内存超额~~如果我训练什么大型数据也就算了,关键我就写了一个y=W*x.......显示如下图所示:
程序如下:
import tensorflow as tf
w = tf.Variable([[1.0,2.0]])
b = tf.Variable([[2.],[3.]])
y = tf.multiply(w,b)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(y))
出错提示:
- 占用的内存越来越多,程序崩溃之后,整个电脑都奔溃了,因为整个显卡全被吃了
2018-06-10 18:28:00.263424: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2018-06-10 18:28:00.598075: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1356] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2018-06-10 18:28:00.598453: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1435] Adding visible gpu devices: 0
2018-06-10 18:28:01.265600: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-10 18:28:01.265826: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929] 0
2018-06-10 18:28:01.265971: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0: N
2018-06-10 18:28:01.266220: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4740 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
2018-06-10 18:28:01.331056: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 4.63G (4970853120 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.399111: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 4.17G (4473767936 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.468293: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.75G (4026391040 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.533138: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.37G (3623751936 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.602452: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.04G (3261376768 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.670225: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.73G (2935238912 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.733120: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.46G (2641714944 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.800101: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.21G (2377543424 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.862064: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.99G (2139789056 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.925434: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.79G (1925810176 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.986180: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.61G (1733229056 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.043456: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.45G (1559906048 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.103531: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.31G (1403915520 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.168973: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.18G (1263524096 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.229387: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.06G (1137171712 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.292997: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 976.04M (1023454720 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.356714: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 878.44M (921109248 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.418167: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 790.59M (828998400 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.482394: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 711.54M (746098688 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
分析原因:
- 显卡驱动不是最新版本,用__驱动软件__更新一下驱动,或者自己去下载更新。
- TF运行太多,注销全部程序冲洗打开。
- 由于TF内核编写的原因,默认占用全部的GPU去训练自己的东西,也就是像meiguo一样优先政策吧
这个时候我们得设置两个方面:
- 选择什么样的占用方式?优先占用__还是__按需占用
- 选择最大占用多少GPU,因为占用过大GPU会导致其它程序奔溃。最好在0.7以下
先更新驱动:

再设置TF程序:
注意:单独设置一个不行!按照网上大神博客试了,结果效果还是很差(占用很多GPU)
设置TF:
- 按需占用
- 最大占用70%GPU
修改代码如下:
import tensorflow as tf
w = tf.Variable([[1.0,2.0]])
b = tf.Variable([[2.],[3.]])
y = tf.multiply(w,b)
init_op = tf.global_variables_initializer()
config = tf.ConfigProto(allow_soft_placement=True)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init_op)
print(sess.run(y))
成功解决:
2018-06-10 18:21:17.532630: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2018-06-10 18:21:17.852442: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1356] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2018-06-10 18:21:17.852817: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1435] Adding visible gpu devices: 0
2018-06-10 18:21:18.511176: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-10 18:21:18.511397: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929] 0
2018-06-10 18:21:18.511544: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0: N
2018-06-10 18:21:18.511815: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4740 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
[[2. 4.]
[3. 6.]]
参考资料:
解决TensorFlow程序无限制占用GPU的更多相关文章
- TensorFlow,Keras限制GPU显存
运行TensorFlow程序会占用过多的显卡比例,多人共同使用GPU的时候,会造成后面的人无法运行程序. 一.TensorFlow 1.预加载比例限制 tf_config = tensorflow.C ...
- C# Winform程序CPU占用高的原因和解决方法
程序CPU占用高的可能原因: 1.存在死循环: 为什么死循环会导致CPU占用高呢? 虽然分时操作系统是采用时间片的机制对CPU的时间进行管理的,也就是说到了一定时间它会自动从一个进程切换到下 ...
- Atitit. 解决80端口 System 占用pid 4,,找到拉个程序或者服务占用http 80服务
Atitit. 解决80端口 System 占用pid 4,,找到拉个程序或者服务占用http服务 这个是http.sys系统服务占用了... net stop http ,三,没法儿终止 1. 寻 ...
- 查看是否用GPU跑的TensorFlow程序
查看是否用GPU跑的TensorFlow程序 第一种方法,直接输出日志法(推荐) import tensorflow as tf sess = tf.Session(config=tf.ConfigP ...
- 【TensorFlow】:解决TensorFlow的ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败
[背景] 在scikit-learn基础上系统结合数学和编程的角度学习了机器学习后(我的github:https://github.com/wwcom614/machine-learning),意犹未 ...
- 彻底解决COM端口被占用(在使用中)问题的办法
今天就遇到这个问题了串口调试的时候发现usb转串口使用的是COM8而串口调试助手里面只有COM1到4,我想去该COM口发现COM1到7都在使用中,找了好多办法都不行,后面在网上找到这篇解决办法的文章, ...
- 收藏:解决其它程序与IIS共享80端口的四个方法
今天写的程序也占用80端口,而 IIS也占用 80端口,我在我的一张网卡上分配了两个IP地址,但是测试发现:只要IIS启动后,我写的程序就无法使用80端口,到网上搜索了一下,终于找到了解决办法: 使用 ...
- 第一个TensorFlow程序
第一个TensorFlow程序 TensorFlow的运行方式分为如下4步: (1)加载数据及定义超参数 (2)构建网络 (3)训练模型 (4)评估模型和进行预测 import tensorflow ...
- TensorFlow指定CPU和GPU方法
TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow ...
随机推荐
- 百战程序员——EL、JSTL
1.EL表达式可以操作作用域中的属性,也可以操作普通的局部变量.对吗? 不对 El表达式一般支持作用域(application.session.request.pagecontext)中的属性.EL变 ...
- Python:从入门到实践--第三章--列表简介--练习
#1.将一些朋友的姓名存储在一个列表中,并将其命名为friends.依次访问该列表中的每个元素,从而将每个朋友的姓名都打印出来. #2.继续使用1中的列表,为每人打印一条消息,每条消息包含相同的问候语 ...
- NoSQL、memcached介绍、安装memcached、查看memcached状态
1.NoSQL 2.memcached介绍 3.安装memcached(二进制包安装) yum install -y memcached libmemcached libevent (若没有安 ...
- java第三章笔记
java的基本程序设计结构: 1. 声明一个变量之后,必须用赋值语句对变量进行显示初始化,千万不能使用未被初始化的变量. 2.在java中不区分变量的声明与定义. 3.当参与/运算的两个操作数都是整数 ...
- 在VMware上安装CentOS6 64位操作系统
---恢复内容开始--- 1.创建新的虚拟机 2.选择自定义,点击下一步: 3.找到镜像位置,添加: 4.点击“稍后安装操作系统”,点击“下一步”: 5.默认点击“下一步”,然后分配CPU: 这里内存 ...
- window下为kibana安装x-pack时候出现Plugin installation was unsuccessful due to error "No valid url specified."错误的解决方案
在Windows环境下为kibana安装x-pack plugin的时候,按照官网提示的安装步骤执行命令: kibana-plugin install file:///E:/software/ELK/ ...
- java 大数运算[转]
用JAVA 实现算术表达式(1234324234324 + 8938459043545)/5 + 343434343432.59845 因为JAVA语言中的long 定义的变量值的最大数受到限制,例如 ...
- java web(四):request、response一些用法和文件的上传和下载
上一篇讲了ServletContent.ServletCOnfig.HTTPSession.request.response几个对象的生命周期.作用范围和一些用法.今天通过一个小项目运用这些知识.简单 ...
- upstream timed out (10060: A connection attempt failed because the connected party did not properly respond
openresty 错误日志报错内容: // :: [error] #: * upstream timed : A connection attempt failed because the conn ...
- python3-基础6
函数嵌套调用: 再调用一个函数的过程中,又调用了其他的函数 函数的嵌套定义:在一个函数的内部,又定义另外一个函数,函数内部定义的变量,在外部不能被调用 名称空间:一种隔离的概念,专门用来存放名字的地方 ...