# -*- coding: utf-8 -*-
# @Author: fangbei
# @Date:   2017-08-26
# @Original:

price_str = '30.14, 29.58, 26.36, 32.56, 32.82'
price_str = price_str.replace(' ', '')  #删除空格
price_array = price_str.split(',')      #转成数组

date_array = []
date_base = 20170118
'''
# for 循环
for _ in range(0, len(price_array)):
    date_array.append(str(date_base))
    date_base += 1
'''

#推导式comprehensions(又称解析式),是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列的结构体。

#列表推导式
date_array = [str(date_base + ind) for ind, _ in enumerate(price_array)]
print(date_array)
# ['20170118', '20170119', '20170120', '20170121', '20170122']

# zip函数
stock_tuple_list = [(date, price) for date, price in zip(date_array, price_array)]
print(stock_tuple_list)
# [('20170118', '30.14'), ('20170119', '29.58'), ('20170120', '26.36'), ('20170121', '32.56'), ('20170122', '32.82')]

#字典推导式
stock_dict = {date: price for date, price in zip(date_array, price_array)}
print(stock_dict)
# {'20170118': '30.14', '20170119': '29.58', '20170120': '26.36', '20170121': '32.56', '20170122': '32.82'}

# 可命名元组 namedtuple
from collections import namedtuple
stock_nametuple = namedtuple('stock', ('date', 'price'))
stock_nametuple_list = [stock_nametuple(date, price) for date, price in zip(date_array, price_array)]
print(stock_nametuple_list)
# [stock(date='20170118', price='30.14'), stock(date='20170119', price='29.58'), stock(date='20170120', price='26.36'), stock(date='20170121', price='32.56'), stock(date='20170122', price='32.82')]

# 有序字典 OrderedDict
from collections import OrderedDict
stock_dict = OrderedDict((date, price) for date, price in zip(date_array, price_array))
print(stock_dict.keys())
# odict_keys(['20170118', '20170119', '20170120', '20170121', '20170122'])

#最小收盘价
print(min(zip(stock_dict.values(), stock_dict.keys())))
# ('26.36', '20170120')

#lambad函数
func = lambda x:x+1
#以上lambda等同于以下函数
def func(x):
    return(x+1)
#找出收盘价中第二大的价格
find_second_max_lambda = lambda dict_array : sorted(zip(dict_array.values(), dict_array.keys()))[-2]
print(find_second_max_lambda(stock_dict))
# ('32.56', '20170121')

#高阶函数
#将相邻的收盘价格组成tuple后装入list
price_float_array = [float(price_str) for price_str in stock_dict.values()]
pp_array = [(price1, price2) for price1, price2 in zip(price_float_array[:-1], price_float_array[1:])]
print(pp_array)
# [(30.14, 29.58), (29.58, 26.36), (26.36, 32.56), (32.56, 32.82)]

from functools import reduce
#外层使用map函数针对pp_array()的每一个元素执行操作,内层使用reduce()函数即两个相邻的价格, 求出涨跌幅度,返回外层结果list
change_array = list(map(lambda pp:reduce(lambda a,b: round((b-a) / a, 3),pp), pp_array))
# print(type(change_array))

change_array.insert(0,0)
print(change_array)
# [0, -0.019, -0.109, 0.235, 0.008]

#将涨跌幅数据加入OrderedDict,配合使用namedtuple重新构建数据结构stock_dict
stock_nametuple = namedtuple('stock', ('date', 'price', 'change'))
stock_dict = OrderedDict((date, stock_nametuple(date, price, change))
                         for date, price, change in
                         zip(date_array, price_array, change_array))
print(stock_dict)
# OrderedDict([('20170118', stock(date='20170118', price='30.14', change=0)), ('20170119', stock(date='20170119', price='29.58', change=-0.019)), ('20170120', stock(date='20170120', price='26.36', change=-0.109)), ('20170121', stock(date='20170121', price='32.56', change=0.235)), ('20170122', stock(date='20170122', price='32.82', change=0.008))])
#用filter()进行筛选,选出上涨的交易日
up_days = list(filter(lambda day: day.change > 0, stock_dict.values()))
print(up_days)
# [stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]

#定义函数计算涨跌日或涨跌值
def filter_stock(stock_array_dict, want_up=True, want_calc_sum=False):
    if not isinstance(stock_array_dict, OrderedDict):
        raise TypeError('stock_array_dict must be OrderedDict')

    filter_func = (lambda day: day.change > 0) if want_up else (lambda day: day.change < 0)

    want_days = list(filter(filter_func, stock_array_dict.values()))

    if not want_calc_sum:
        return want_days

    change_sum = 0.0
    for day in want_days:
        change_sum += day.change

    return change_sum

#偏函数 partial
from functools import partial
filter_stock_up_days    = partial(filter_stock, want_up=True,  want_calc_sum=False)
filter_stock_down_days  = partial(filter_stock, want_up=False, want_calc_sum=False)
filter_stock_up_sums    = partial(filter_stock, want_up=True,  want_calc_sum=True)
filter_stock_down_sums  = partial(filter_stock, want_up=False, want_calc_sum=True)

print('所有上涨的交易日:{}'.format(list(filter_stock_up_days(stock_dict))))
print('所有下跌的交易日:{}'.format(list(filter_stock_down_days(stock_dict))))
print('所有上涨交易日的涨幅和:{}'.format(filter_stock_up_sums(stock_dict)))
print('所有下跌交易日的跌幅和:{}'.format(filter_stock_down_sums(stock_dict)))
# 所有上涨的交易日:[stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]
# 所有下跌的交易日:[stock(date='20170119', price='29.58', change=-0.019), stock(date='20170120', price='26.36', change=-0.109)]
# 所有上涨交易日的涨幅和:0.243
# 所有下跌交易日的跌幅和:-0.128

Python量化教程 常用函数的更多相关文章

  1. Python 数据类型,常用函数方法分类

    Python基本数据类型:(int) 字符串(str)列表(list)元组(tuple)字典(dict)布尔(bool) python中可以简单使用 类型(数据)创建或转换数据 例: #字符串转数字 ...

  2. Python math库常用函数

    math库常用函数及举例: 注意:使用math库前,用import导入该库>>> import math 取大于等于x的最小的整数值,如果x是一个整数,则返回x>>> ...

  3. Python数据分析--Numpy常用函数介绍(2)

    摘要:本篇我们将以分析历史股价为例,介绍怎样从文件中载入数据,以及怎样使用NumPy的基本数学和统计分析函数.学习读写文件的方法,并尝试函数式编程和NumPy线性代数运算,来学习NumPy的常用函数. ...

  4. python笔记-正则表达式常用函数

    1.re.findall()函数 语法:re.findall(pattern,string,flags=0) --> list(列表) 列出字符串中模式的所有匹配项,并作为一个列表返回.如果无匹 ...

  5. Python 学习:常用函数整理

    整理Python中常用的函数 一,把字符串形式的list转换为list 使用ast模块中的literal_eval函数来实现,把字符串形式的list转换为Python的基础类型list from as ...

  6. Python基础:常用函数

    1:enumerate enumerate(sequence, start=0) 该函数返回一个enumerate对象(一个迭代器).其中的sequence参数可以是序列.迭代器或者支持迭代的其他对象 ...

  7. Python OS模块常用函数说明

    Python的标准库中的os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.即它允许一个程序在编写后不需要任何改动,也不会发生任何问题,就可以在Linux和Wi ...

  8. .Net程序员之Python基础教程学习----函数和异常处理[Fifth Day]

       今天主要记录,Python中函数的使用以及异常处理. 一.函数:    1.函数的创建以及调用. def Add(val1,val2): return val1+val2; print Add( ...

  9. Python基础(一)常用函数

    1.map() 此函数可以,将列表内每一个元素进行操作,并返回列表 原型 map(function,[list]) def fc(x): return x * 2 print(map(fc,[1,2, ...

随机推荐

  1. 今天搞log4net插入错误日志去mysql数据库的时候出现了点问题,已解决。记录下解决方案

    先上图 配置log4net的时候要填这项,可是这个value我不知道啊.....上图里的value是我用下面的方法获取的 MySqlConnection con = new MySqlConnecti ...

  2. Ubuntu 12.04.3 X64 使用 NFS 作为文件共享存储方式 安装 Oracle11g RAC

    nfs-server 在 Ubuntu上可以选择 : nfs-kernel-server:如果在windows上,可以选择:haneWIN NFS Server nfs-client Ubuntu上使 ...

  3. mysql connection不断增加

    程序运行以后,刷新页面,在mysql的status里面检测到Threads_connected的值不断上升. 对程序断点调试,发现,是由于下面的代码导致. class ConnectionMySQL( ...

  4. failed to push some refs to 'git@github.com:*/learngit.git'

    https://jingyan.baidu.com/article/f3e34a12a25bc8f5ea65354a.html 出现错误的主要原因是github中的README.md文件不在本地代码目 ...

  5. 编写高性能的jQuery代码

    jQuery Optimization 现在jQuery已经出现在很多项目中,然而许多同学忽略了他的性能问题以及代码质量问题, 下面是我对jQuery的一些性能方面的学习. 选择器 选择器是jQuer ...

  6. Neo4j简单的样例

    系统环境: Ubuntu 04.10 x64 一:安装 下载最新版:neo4j-community-2.2.3-unix.tar.gz  解压 cd neo4j-community-2.2.3/bin ...

  7. spring xml properties split with comma for list

    在注入spring bean 属性值的时候常常会用到list, 一般使用方式例如以下: <bean id="testBean" class="com.mytest. ...

  8. mongoDB在windows64上安装

    1.下载64位:mongodb-win32-x86_64-enterprise-windows-64-2.6.4-signed.msi 2.安装目录:将应用安装到此目录下面:C:\MongoDB\ 3 ...

  9. Dubbo注册中心Zookeeper安装步骤

    第一步:安装jdk 第二步:上传zookeeper至Linux 第三步:解压zookeeper安装包(/soft目录是我在根目录下建立的一个用户存放上传安装包的目录),解压命令tar -xvf /so ...

  10. 切换sprite

    using UnityEngine; using System.Collections; public class BTN : MonoBehaviour { void Awake ()  { //s ...