我们继续采取简单的策略,这次模拟实际交易。这个想法很简单:

  • 如果调整后的收盘价高于SMA(15),我们将进入多头仓位(我们下单买入市价)。
  • 如果调整后的收盘价低于SMA(15),我们退出多头头寸(我们出售)
from pyalgotrade import strategy
from pyalgotrade.barfeed import yahoofeed
from pyalgotrade.technical import ma class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument, smaPeriod):
super(MyStrategy, self).__init__(feed, 1000)
self.__position = None
self.__instrument = instrument
# We'll use adjusted close values instead of regular close values.
self.setUseAdjustedValues(True)
self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod) def onEnterOk(self, position):
execInfo = position.getEntryOrder().getExecutionInfo()
self.info("BUY at $%.2f" % (execInfo.getPrice())) def onEnterCanceled(self, position):
self.__position = None def onExitOk(self, position):
execInfo = position.getExitOrder().getExecutionInfo()
self.info("SELL at $%.2f" % (execInfo.getPrice()))
self.__position = None def onExitCanceled(self, position):
# If the exit was canceled, re-submit it.
self.__position.exitMarket() def onBars(self, bars):
# Wait for enough bars to be available to calculate a SMA.
if self.__sma[-1] is None:
return bar = bars[self.__instrument]
# If a position was not opened, check if we should enter a long position.
if self.__position is None:
if bar.getPrice() > self.__sma[-1]:
# Enter a buy market order for 10 shares. The order is good till canceled.
self.__position = self.enterLong(self.__instrument, 10, True)
# Check if we have to exit the position.
elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
self.__position.exitMarket() def run_strategy(smaPeriod):
# Load the yahoo feed from the CSV file
feed = yahoofeed.Feed()
feed.addBarsFromCSV("orcl", "orcl-2000.csv") # Evaluate the strategy with the feed.
myStrategy = MyStrategy(feed, "orcl", smaPeriod)
myStrategy.run()
print "Final portfolio value: $%.2f" % myStrategy.getBroker().getEquity() run_strategy(15)

运行策略后看到如下结果

2000-01-26 00:00:00 strategy [INFO] BUY at $27.26
2000-01-28 00:00:00 strategy [INFO] SELL at $24.74
2000-02-03 00:00:00 strategy [INFO] BUY at $26.60
2000-02-22 00:00:00 strategy [INFO] SELL at $28.40
2000-02-23 00:00:00 strategy [INFO] BUY at $28.91
2000-03-31 00:00:00 strategy [INFO] SELL at $38.51
2000-04-07 00:00:00 strategy [INFO] BUY at $40.19
2000-04-12 00:00:00 strategy [INFO] SELL at $37.44
2000-04-19 00:00:00 strategy [INFO] BUY at $37.76
2000-04-20 00:00:00 strategy [INFO] SELL at $35.45
2000-04-28 00:00:00 strategy [INFO] BUY at $37.70
2000-05-05 00:00:00 strategy [INFO] SELL at $35.54
2000-05-08 00:00:00 strategy [INFO] BUY at $36.17
2000-05-09 00:00:00 strategy [INFO] SELL at $35.39
2000-05-16 00:00:00 strategy [INFO] BUY at $37.28
2000-05-19 00:00:00 strategy [INFO] SELL at $34.58
2000-05-31 00:00:00 strategy [INFO] BUY at $35.18
2000-06-23 00:00:00 strategy [INFO] SELL at $38.81
2000-06-27 00:00:00 strategy [INFO] BUY at $39.56
2000-06-28 00:00:00 strategy [INFO] SELL at $39.42
2000-06-29 00:00:00 strategy [INFO] BUY at $39.41
2000-06-30 00:00:00 strategy [INFO] SELL at $38.60
2000-07-03 00:00:00 strategy [INFO] BUY at $38.96
2000-07-05 00:00:00 strategy [INFO] SELL at $36.89
2000-07-21 00:00:00 strategy [INFO] BUY at $37.19
2000-07-24 00:00:00 strategy [INFO] SELL at $37.04
2000-07-26 00:00:00 strategy [INFO] BUY at $35.93
2000-07-28 00:00:00 strategy [INFO] SELL at $36.08
2000-08-01 00:00:00 strategy [INFO] BUY at $36.11
2000-08-02 00:00:00 strategy [INFO] SELL at $35.06
2000-08-04 00:00:00 strategy [INFO] BUY at $37.61
2000-09-11 00:00:00 strategy [INFO] SELL at $41.34
2000-09-29 00:00:00 strategy [INFO] BUY at $39.07
2000-10-02 00:00:00 strategy [INFO] SELL at $38.30
2000-10-20 00:00:00 strategy [INFO] BUY at $34.71
2000-10-31 00:00:00 strategy [INFO] SELL at $31.34
2000-11-20 00:00:00 strategy [INFO] BUY at $23.35
2000-11-21 00:00:00 strategy [INFO] SELL at $23.83
2000-12-01 00:00:00 strategy [INFO] BUY at $25.33
2000-12-21 00:00:00 strategy [INFO] SELL at $26.72
2000-12-22 00:00:00 strategy [INFO] BUY at $29.17
Final portfolio value: $979.44

如果调整sma的测试周期,讲得到不一样的结果

for i in range(10, 30):
run_strategy(i)

我们发现sma(20)的结果最好

Final portfolio value: $1075.38

作者:readilen
链接:http://www.jianshu.com/p/3ac363f931d3
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

PyalgoTrade 交易(五)的更多相关文章

  1. 使用metamask钱包

    一.安装火狐浏览器metamask插件 打开火狐浏览器的附件组件,搜索metamask 点击第一个 点击“添加到Firefox” 添加成功后,浏览器右上角有一个狐狸标志 点击这个标志,打开插件 二.创 ...

  2. 量化投资学习笔记01——初识Pyalgotrade量化交易回测框架

    年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响.结果困在了计算回测数据那里,结果老也不对,就暂时放下了.最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotra ...

  3. Hyperledger Fabric——balance transfer(五)执行交易

    链码安装和实例化之后就可以调用chaincode执行交易,下面分析简单的账户转账操作是如何完成的. 源码分析 1.首先看app.js的路由函数 app.post('/channels/:channel ...

  4. [转载]五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O

    转载自http://blog.sina.com.cn/s/blog_64e090b001016843.html 转载自http://blog.sina.com.cn/s/blog_64e090b001 ...

  5. python之信用卡ATM(第五天)

    本节作业 作业需求: 模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 每月22号出账单,每月10号为还款日, ...

  6. 五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O

    电子商务模式是指企业运用互联网开展经营取得营业收入的基本方式,也就是指在网络环境中基于一定技术基础的商务运作方式和盈利模式.目前,常见的电子商务模式主要有B2B.B2C.C2B.C2C.O2O等几种, ...

  7. 关于优化C#程序的五十种方法

    一.用属性代替可访问的字段 1..NET数据绑定只支持数据绑定,使用属性可以获得数据绑定的好处: 2.在属性的get和set访问器重可使用lock添加多线程的支持. 二.readonly(运行时常量) ...

  8. ETL构建数据仓库五步法

    原文:http://huangy82.blog.163.com/blog/static/49069827200923034638409/ ETL构建企业级数据仓库五步法 在数据仓库构建中,ETL贯穿于 ...

  9. 监控 DNS 流量,预防安全隐患五大招!

    尽管 IT 管理员尽心尽责地监控设备.主机和网络是否存在恶意活动的迹象,却往往出力不讨好.主机入侵检测和端点保护对很多公司来说可能是"必需"的安全措施,但如果要找出 RAT.roo ...

随机推荐

  1. Hadoop权限认证的执行流程

    Hadoop分布式文件系统实现了一个和POSIX系统类似的文件和目录的权限模型.每个文件和目录有一个所有者(owner)和一个组(group).文件或目录对其所有者.同组的其他用户以及所有其他用户分别 ...

  2. vue基础篇(一)

    1.简介 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手 ...

  3. kernel内核配置说明

    内核过程中的配置这一步做详细的说明吧,总结一下,多数内容源于网上的多篇文章. 首先,配置时可能出现的选项,对其选择先来个说明吧. Typically, your choices for each op ...

  4. linux在线安装telnet

    平常在调试机器网络互通的时候使用到telnet,新机器一般没安装相应命令,需要我们手工安装. 下面是在线安装的方法,使用以下命令即可完成安装: yum install telnet

  5. R之内存管理

    引言 R的内存管理机制究竟是什么样子的?最近几日在讲一个分享会,被同学问到这方面的问题,可是到网上去查,终于找到一篇R语言内存管理不过讲的不清不楚的,就拿memory.limit()函数来说,是在wi ...

  6. LightOJ 1071 Baker Vai(拆点+最大费用流)题解

    题意:给一个n*m的方格,每个格子上都有一个数字表示价值,小A在左上角,他从左上角走到右下角只能向右或向下走,然后再从右下角走上左上角,这次只能向上或向左走,这两条路绝对没有重复,问你怎样走有最大价值 ...

  7. 嵌入式Linux应用程序开发环境搭建记录

    2016年2月 参考资料: OK210软件手册(Linux版).pdf Ubuntu下Qt4.7.1编译环境配置说明.pdf 我阅读了以下内容: OK210软件手册(Linux版).pdf 第七章 O ...

  8. (译)综合指南:通过Ubuntu 16.04上从Source构建来安装支持GPU的Caffe2

    (译)综合指南:通过Ubuntu 16.04上从Source构建来安装支持GPU的Caffe2 译者注: 原文来自:https://tech.amikelive.com/node-706/compre ...

  9. python 通过列表元素值截取列表并获取长度

    def count_range_in_list(li, min, max): ctr = for x in li: if min <= x <= max: ctr += return ct ...

  10. python 复数的数学四则运算

    print(+3j)+(-7j)) print(+3j)-(-7j)) print(+3j)*(-7j)) print(+3j)/(-7j))