http://acm.hdu.edu.cn/showproblem.php?pid=1565

题意:

给你一个n*n的格子的棋盘,每个格子里面有一个非负数。 
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大。

思路:

最大点权独立集=点权之和-最小点权覆盖集=最小割=最大流

先来看最小点权覆盖集,也就是选取点覆盖所有的边,并且权值要最小。

解决方法是:

从源点向X集连边,容量为点的权值,Y集向汇点连边,容量也为点的权值。如果u和v这两个点相连的话,则将这两个点连一条有向边,容量为INF,因为我们要割的不是这个。这样,从s到t的路径中,就包含了所有的边,最小点覆盖也就是连通所有边,最小割就是让所有边都不连通,于是求个最大流即可。

这样一来,最大点权独立集也就可以求出来了。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
typedef long long LL; const int maxn=+;
const int INF=0x3f3f3f3f; struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int w,int f):from(u),to(v),cap(w),flow(f){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int cur[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
for(int i=;i<n;++i) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,) );
edges.push_back( Edge(to,from,,) );
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
queue<int> Q;
memset(vis,,sizeof(vis));
vis[s]=true;
d[s]=;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==) return a;
int flow=, f;
for(int &i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+ && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>)
{
e.flow +=f;
edges[G[x][i]^].flow -=f;
flow +=f;
a -=f;
if(a==) break;
}
}
return flow;
} int Maxflow(int s,int t)
{
this->s=s; this->t=t;
int flow=;
while(BFS())
{
memset(cur,,sizeof(cur));
flow +=DFS(s,INF);
}
return flow;
}
}DC; int n;
int map[][];
int dx[]={,,,-};
int dy[]={,-,,}; int main()
{
while(~scanf("%d",&n))
{
int sum=;
int src=,dst=n*n+;
DC.init(dst+);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&map[i][j]);
sum+=map[i][j];
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int id=(i-)*n+j;
int t=(i+j)%;
if(t)
{
DC.AddEdge(src,id,map[i][j]);
for(int k=;k<;k++)
{
int x=dx[k]+i;
int y=dy[k]+j;
if(x<||x>n||y<||y>n) continue;
DC.AddEdge(id,(x-)*n+y,INF);
}
}
else DC.AddEdge(id,dst,map[i][j]);
}
int ans=DC.Maxflow(src,dst);
printf("%d\n",sum-ans);
}
return ;
}

HDU 1565 方格取数(1)(最大点权独立集)的更多相关文章

  1. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  2. HDU 1565 1569 方格取数(最大点权独立集)

    HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...

  3. hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)

    http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...

  4. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  5. TZOJ 3665 方格取数(2)(最大点权独立集)

    描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...

  6. hdu1569 方格取数 求最大点权独立集

    题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和.思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点 ...

  7. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

  8. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  9. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...

随机推荐

  1. Dell、IBM服务器配置远程管理卡

    author: headsen  chen date: 2018-10-09 14:12:32 1,IBM的服务器: 需要在bios里边进行配置,具体配置如下: , 开机画面过完之后,按F1进入bio ...

  2. 【BZOJ4278】[ONTAK2015]Tasowanie 后缀数组

    [BZOJ4278][ONTAK2015]Tasowanie Description 给定两个数字串A和B,通过将A和B进行二路归并得到一个新的数字串T,请找到字典序最小的T. Input 第一行包含 ...

  3. Android在ArrayAdapter<>里如何得到List<>的Items

    public class ItemAdapter extends ArrayAdapter<DemoModel> { private final List<DemoModel> ...

  4. numeric_limits 模板的相关知识点

    说白了,它是一个模板类,它主要是把C++当中的一些内建型别进行了封装,比如说numeric_limits<int>是一个特化后的类,从这个类的成员变量与成员函数中,我们可以了解到int的很 ...

  5. 系统性能优化- Session丢失

    最近在做项目的过程中,客户经常反馈在操作的时候进场会突然跳转到登录页面. 先描述下系统情况: 操作系统:WindowsServer 2008 .NET版本:.NET 4.0/ASP.NET 4.0/A ...

  6. SQL Server经典函数之数字去零

    需求: 针对带有小数点的数字信息,去除小数点后多余的零 可能存在的情况: 1.精度范围内,出现多余的零    eg:1234.3400     想要的结果为1234.34 2.精度变大出现的多余的零, ...

  7. CodeForces 17D Notepad(同余定理)

    D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...

  8. Database Sharding Challenges DATABASE SHARDING

    w分布式查询.数据聚合.跨碎片join是可且应避免的.自增主键管理.基于-会话/事务/语句-选择碎片.通过-主键/模块/碎片索引-碎片化数据 http://www.agildata.com/datab ...

  9. ETL__pentaho__SPOON_PDI

    Pentaho Data Integration (PDI, also called Kettle),是pentaho的etl工具.虽然etl工具一般都用在数据仓库环境中,可是,PDI还是可以做以下事 ...

  10. IntelliJ IDEA 插件

    alibaba java  coding guidelines 阿里巴巴Java编码指南插件支持. Mybatis-log-plugin 把 mybatis 输出的sql日志还原成完整的sql语句. ...