简单遗传算法-python实现
ObjFunction.py
import math def GrieFunc(vardim, x, bound):
"""
Griewangk function
"""
s1 = 0.
s2 = 1.
for i in range(1, vardim + 1):
s1 = s1 + x[i - 1] ** 2
s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
y = 1. / (1. + y)
return y def RastFunc(vardim, x, bound):
"""
Rastrigin function
"""
s = 10 * 25
for i in range(1, vardim + 1):
s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])
return s
GAIndividual.py
import numpy as np
import ObjFunction class GAIndividual: '''
individual of genetic algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0. def generate(self):
'''
generate a random chromsome for genetic algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
GeneticAlgorithm.py
import numpy as np
from GAIndividual import GAIndividual
import random
import copy
import matplotlib.pyplot as plt class GeneticAlgorithm: '''
The class for genetic algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = GAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of genetic algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.selectionOperation()
self.crossoverOperation()
self.mutationOperation()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def selectionOperation(self):
'''
selection operation for Genetic Algorithm
'''
newpop = []
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros((self.sizepop, 1)) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] for i in xrange(0, self.sizepop):
r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
newpop.append(self.population[idx])
self.population = newpop def crossoverOperation(self):
'''
crossover operation for genetic algorithm
'''
newpop = []
for i in xrange(0, self.sizepop, 2):
idx1 = random.randint(0, self.sizepop - 1)
idx2 = random.randint(0, self.sizepop - 1)
while idx2 == idx1:
idx2 = random.randint(0, self.sizepop - 1)
newpop.append(copy.deepcopy(self.population[idx1]))
newpop.append(copy.deepcopy(self.population[idx2]))
r = random.random()
if r < self.params[0]:
crossPos = random.randint(1, self.vardim - 1)
for j in xrange(crossPos, self.vardim):
newpop[i].chrom[j] = newpop[i].chrom[
j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]
newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + \
(1 - self.params[2]) * newpop[i].chrom[j]
self.population = newpop def mutationOperation(self):
'''
mutation operation for genetic algorithm
'''
newpop = []
for i in xrange(0, self.sizepop):
newpop.append(copy.deepcopy(self.population[i]))
r = random.random()
if r < self.params[1]:
mutatePos = random.randint(0, self.vardim - 1)
theta = random.random()
if theta > 0.5:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
else:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
self.population = newpop def printResult(self):
'''
plot the result of the genetic algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Genetic algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__":
bound = np.tile([[-600], [600]], 25)
ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])
ga.solve()
简单遗传算法-python实现的更多相关文章
- 完成一段简单的Python程序,使用函数实现用来判断输入数是偶数还是奇数
#!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,使用函数实现用来判断偶数和奇数'''def number_deal(a): if a%2==0 ...
- 完成一段简单的Python程序,用于实现一个简单的加减乘除计算器功能
#!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,用于实现一个简单的加减乘除计算器功能'''try: a=int(raw_input(" ...
- 简单的python http接口自动化脚本
今天给大家分享一个简单的Python脚本,使用python进行http的接口测试,脚本很简单,逻辑是:读取excel写好的测试用例,然后根据excel中的用例内容进行调用,判断预期结果中的返回值是否和 ...
- 简单说明Python中的装饰器的用法
简单说明Python中的装饰器的用法 这篇文章主要简单说明了Python中的装饰器的用法,装饰器在Python的进阶学习中非常重要,示例代码基于Python2.x,需要的朋友可以参考下 装饰器对与 ...
- 带你简单了解python协程和异步
带你简单了解python的协程和异步 前言 对于学习异步的出发点,是写爬虫.从简单爬虫到学会了使用多线程爬虫之后,在翻看别人的博客文章时偶尔会看到异步这一说法.而对于异步的了解实在困扰了我好久好久,看 ...
- 简单的python购物车
这几天,一直在学python,跟着视频老师做了一个比较简单的python购物车,感觉不错,分享一下 products = [['Iphone8',6888],['MacPro ...
- 一个简单的python爬虫程序
python|网络爬虫 概述 这是一个简单的python爬虫程序,仅用作技术学习与交流,主要是通过一个简单的实际案例来对网络爬虫有个基础的认识. 什么是网络爬虫 简单的讲,网络爬虫就是模拟人访问web ...
- 【转】简单谈谈python的反射机制
[转]简单谈谈python的反射机制 对编程语言比较熟悉的朋友,应该知道“反射”这个机制.Python作为一门动态语言,当然不会缺少这一重要功能.然而,在网络上却很少见到有详细或者深刻的剖析论文.下面 ...
- Tkinter制作简单的python编辑器
想要制作简单的python脚本编辑器,其中文字输入代码部分使用Tkinter中的Text控件即可实现. 但是问题是,如何实现高亮呢?参考python自带的编辑器:python27/vidle文件夹中的 ...
随机推荐
- monit拉起服务
check process hive_metastore matching "HiveMetaStore" start program = "/usr/bin/nohup ...
- 20145329 《网络对抗技术》MS08_067远程漏洞攻击
MS08_067远程漏洞攻击:shell 实现攻击的前提是:攻击机和靶机在同一个网段下,首先将kali的ip改为与winxp的ip一样,二者能ping通 两台虚拟机: kali ip:192.168. ...
- linux内核与分析 心得与体会
作业目录: (1)计算机是如何工作的:http://www.cnblogs.com/20135335hs/p/5213394.html (2)操作系统是如何工作的:http://www.cnblogs ...
- 如何为openwrt生成补丁
答:使用quilt工具 步骤如下: 1. 配置quilt $cat> ~/.quiltrc <<EOF QUILT_DIFF_ARGS="--no-timestamps - ...
- 如何优雅地发布Hexo博客
前言 就目前而言,我所知道的发布Hexo的博客有如下几种: 1.原始方式,也就是在服务器上编写md文件,然后利用hexo g来生成,详见:hexo从零开始到搭建完整: 2.利用github+hook来 ...
- Singleton(单例)
意图: 保证一个类仅有一个实例,并提供一个访问它的全局访问点. 适用性: 当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时. 当这个唯一实例应该是通过子类化可扩展的,并且客户应该无需更改代 ...
- 后端利用Redis队列及哈希实现定时推送提醒的三个思路
周煦辰 2016年8月31日 本文介绍了一下本人在开发过程中遇到"定时推送提醒"的需求的时候所思考的三种解决方案. 明确问题 首先明确一下这个需求可能包含的几个"坑&qu ...
- 雷林鹏分享:Ruby 迭代器
Ruby 迭代器 迭代器是集合支持的方法.存储一组数据成员的对象称为集合.在 Ruby 中,数组和散列可以称之为集合. 迭代器返回集合的所有元素,一个接着一个.在这里我们将讨论两种迭代器,each 和 ...
- CentOS 6.5安装和配置ngix
一.安装配置ngix 这里用wget直接拉取并安装资源文件 首先安装必要的库(nginx 中gzip模块需要 zlib 库,rewrite模块需要 pcre 库,ssl 功能需要openssl库). ...
- vue spn如何做seo优化
vue spn如何做seo优化 突然来了一个需求,对已有的项目做SEO优化,WHAT? 总所周知,spn对seo不够优化,因而官方考虑到直接使用ssr 一个不算解决办法的办法prerender-spa ...