简单遗传算法-python实现
ObjFunction.py
import math def GrieFunc(vardim, x, bound):
"""
Griewangk function
"""
s1 = 0.
s2 = 1.
for i in range(1, vardim + 1):
s1 = s1 + x[i - 1] ** 2
s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
y = 1. / (1. + y)
return y def RastFunc(vardim, x, bound):
"""
Rastrigin function
"""
s = 10 * 25
for i in range(1, vardim + 1):
s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])
return s
GAIndividual.py
import numpy as np
import ObjFunction class GAIndividual: '''
individual of genetic algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0. def generate(self):
'''
generate a random chromsome for genetic algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
GeneticAlgorithm.py
import numpy as np
from GAIndividual import GAIndividual
import random
import copy
import matplotlib.pyplot as plt class GeneticAlgorithm: '''
The class for genetic algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = GAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of genetic algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.selectionOperation()
self.crossoverOperation()
self.mutationOperation()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def selectionOperation(self):
'''
selection operation for Genetic Algorithm
'''
newpop = []
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros((self.sizepop, 1)) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] for i in xrange(0, self.sizepop):
r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
newpop.append(self.population[idx])
self.population = newpop def crossoverOperation(self):
'''
crossover operation for genetic algorithm
'''
newpop = []
for i in xrange(0, self.sizepop, 2):
idx1 = random.randint(0, self.sizepop - 1)
idx2 = random.randint(0, self.sizepop - 1)
while idx2 == idx1:
idx2 = random.randint(0, self.sizepop - 1)
newpop.append(copy.deepcopy(self.population[idx1]))
newpop.append(copy.deepcopy(self.population[idx2]))
r = random.random()
if r < self.params[0]:
crossPos = random.randint(1, self.vardim - 1)
for j in xrange(crossPos, self.vardim):
newpop[i].chrom[j] = newpop[i].chrom[
j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]
newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + \
(1 - self.params[2]) * newpop[i].chrom[j]
self.population = newpop def mutationOperation(self):
'''
mutation operation for genetic algorithm
'''
newpop = []
for i in xrange(0, self.sizepop):
newpop.append(copy.deepcopy(self.population[i]))
r = random.random()
if r < self.params[1]:
mutatePos = random.randint(0, self.vardim - 1)
theta = random.random()
if theta > 0.5:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
else:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
self.population = newpop def printResult(self):
'''
plot the result of the genetic algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Genetic algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__":
bound = np.tile([[-600], [600]], 25)
ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])
ga.solve()
简单遗传算法-python实现的更多相关文章
- 完成一段简单的Python程序,使用函数实现用来判断输入数是偶数还是奇数
#!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,使用函数实现用来判断偶数和奇数'''def number_deal(a): if a%2==0 ...
- 完成一段简单的Python程序,用于实现一个简单的加减乘除计算器功能
#!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,用于实现一个简单的加减乘除计算器功能'''try: a=int(raw_input(" ...
- 简单的python http接口自动化脚本
今天给大家分享一个简单的Python脚本,使用python进行http的接口测试,脚本很简单,逻辑是:读取excel写好的测试用例,然后根据excel中的用例内容进行调用,判断预期结果中的返回值是否和 ...
- 简单说明Python中的装饰器的用法
简单说明Python中的装饰器的用法 这篇文章主要简单说明了Python中的装饰器的用法,装饰器在Python的进阶学习中非常重要,示例代码基于Python2.x,需要的朋友可以参考下 装饰器对与 ...
- 带你简单了解python协程和异步
带你简单了解python的协程和异步 前言 对于学习异步的出发点,是写爬虫.从简单爬虫到学会了使用多线程爬虫之后,在翻看别人的博客文章时偶尔会看到异步这一说法.而对于异步的了解实在困扰了我好久好久,看 ...
- 简单的python购物车
这几天,一直在学python,跟着视频老师做了一个比较简单的python购物车,感觉不错,分享一下 products = [['Iphone8',6888],['MacPro ...
- 一个简单的python爬虫程序
python|网络爬虫 概述 这是一个简单的python爬虫程序,仅用作技术学习与交流,主要是通过一个简单的实际案例来对网络爬虫有个基础的认识. 什么是网络爬虫 简单的讲,网络爬虫就是模拟人访问web ...
- 【转】简单谈谈python的反射机制
[转]简单谈谈python的反射机制 对编程语言比较熟悉的朋友,应该知道“反射”这个机制.Python作为一门动态语言,当然不会缺少这一重要功能.然而,在网络上却很少见到有详细或者深刻的剖析论文.下面 ...
- Tkinter制作简单的python编辑器
想要制作简单的python脚本编辑器,其中文字输入代码部分使用Tkinter中的Text控件即可实现. 但是问题是,如何实现高亮呢?参考python自带的编辑器:python27/vidle文件夹中的 ...
随机推荐
- Java实现:数据结构之排序
Java实现:数据结构之排序 0.概述 形式化定义:假设有n个记录的序列(待排序列)为{ R1, R2 , -, Rn },其相应的关键字序列为 { K1, K2, -, Kn }.找到{1,2, - ...
- java读取pdf总结
第三方软件 1.pdfbox PDFBox 0.7.3.PDFBox是一个开源的对pdf文件进行操作的库. PDFBox-0.7.3.jar加入classpath.同时FontBox1.0.jar加入 ...
- JDK 1.8 ConcurrentHashMap 源码剖析
转载两篇不错的文章: 第一篇: 前言 HashMap是我们平时开发过程中用的比较多的集合,但它是非线程安全的,在涉及到多线程并发的情况,进行put操作有可能会引起死循环,导致CPU利用率接近100%. ...
- POJ 1006 Biorhythnms(中国剩余定理)
http://poj.org/problem?id=1006 题意: (n+d) % 23 = p ;(n+d) % 28 = e ;(n+d) % 33 = i ; 求最小的n. 思路: 这道题就是 ...
- spark 累加历史 + 统计全部 + 行转列
spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数 1 应用场景: 1.我们需要统计用户的总使用时长(累加历史) 2.前台展现页面需要对多个维度进行查询,如:产品.地 ...
- 定义集合属性(WPF)
在wpf中,定义集合属性时,字段可以使用“ObservableCollection<T>”定义,以保证数据改变时的自动通知功能:属性可以使用“ICollection”定义,保证属性的灵活性 ...
- error processing package oracle-java8-installer问题解决
ubuntu通过ppa源安装jdk时遇到如下问题: download failedOracle JDK 8 is NOT installed.dpkg: error processing packag ...
- jackson springboot null节点忽略配置
spring: jackson: date-format: yyyy-MM-dd HH:mm:ss default-property-inclusion: non_null spring.jackso ...
- 101. Symmetric Tree -- 判断树结构是否对称
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...
- TWain 在 Qt4 中的调用方法
1.开发环境 Windows7_sp1_x64 Qt4.7.4 + mingw32 twain_32.dll (1.7.1.3) 2.常用缩写 DSM: Data Source Manager 数据源 ...