题目链接

正解:组合数+$dp$。

今天考试的题,考试的时候感觉自己有点脑残过头了。。

似乎发现了所有$1$其实都是一样的,然后不知道怎么强制每种物品只选一个。。

然后就写了一个所有物品可以选任意个的$dp$,尝试与答案找一找规律,并没有找到,看完$std$发现只要再加一个转移就能过了。。所以还是讲讲正解吧。。

首先所有$1$都是一样的,所以我们并不需要状压,直接开一个背包就行。

设$f[i][j]$表示用了$i$个物品,$1$的个数为$j$的方案数,注意这个是有序状态,即使用顺序不同方案也不同。

那么首先枚举当前这个物品让$1$的个数增加了多少,可能为$1,-1,3,-3$,这一步很容易转移。

然后我们之前的转移是枚举的任意物品,必然会算重,而算重的充要条件就是$i$与之前某一个物品是一样的。

我们先强制$i$与$i-1$是相同物品,那么我们可以用$i-2$的状态来转移到$i$,最后我们再乘一个$i-1$表示第$i-1$个物品实际上是可以插到前$i-1$个位置的任意一个的。

最后由于我们算的是排列,所以还要再除以一个$m!$。

通过这道题,我发现我还是太$naive$,见过的套路还是太少了,看来还是要深入学习各种计数的套路。。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define rhl (10007)
#define N (1005) using namespace std; int f[N][N],c[N][N],goal[N],n,m,st,fac; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return q*x;
} il char gc(){
RG char ch=getchar();
while (ch!='' && ch!='') ch=getchar();
return ch;
} il int qpow(RG int a,RG int b){
RG int ans=;
while (b){
if (b&) ans=ans*a%rhl;
if (b>>=) a=a*a%rhl;
}
return ans;
} il void work(){
for (RG int i=;i<n;++i) goal[i]=; st=;
for (RG int i=;i<n;++i) goal[i]^=gc()=='';
for (RG int i=;i<n;++i) goal[i]^=gc()=='';
for (RG int i=;i<n;++i) st+=goal[i]; f[][st]=;
for (RG int i=(fac=);i<=m;fac=fac*(i++)%rhl)
for (RG int j=;j<=n;++j){
f[i][j]=;
if (j) f[i][j]=(1LL*c[j-][]*c[n-j+][]*f[i-][j-]+f[i][j])%rhl;
if (j<n) f[i][j]=(1LL*c[j+][]*c[n-j-][]*f[i-][j+]+f[i][j])%rhl;
if (j->=) f[i][j]=(c[n-j+][]*f[i-][j-]+f[i][j])%rhl;
if (j+<=n) f[i][j]=(c[j+][]*f[i-][j+]+f[i][j])%rhl;
if (i>) f[i][j]=(f[i][j]-1LL*(c[n][]-i+)*f[i-][j]*(i-))%rhl;
}
printf("%d\n",(f[m][]+rhl)*qpow(fac,rhl-)%rhl),f[][st]=; return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("cho.in","r",stdin);
freopen("cho.out","w",stdout);
#endif
c[][]=;
for (RG int i=;i<=;++i){
c[i][]=c[i][i]=;
for (RG int j=;j<i;++j){
c[i][j]=c[i-][j-]+c[i-][j];
if (c[i][j]>=rhl) c[i][j]-=rhl;
}
}
while (scanf("%d%d",&n,&m)!=EOF && (n|m)) work();
return ;
}

poj3718 Facer's Chocolate Dream的更多相关文章

  1. 【poj3718】 Facer's Chocolate Dream

    http://poj.org/problem?id=3718 (题目链接) 题意 给出${2}$个长度为${n}$的${01}$串,问是否存在${m}$个长度为${n}$的有三个位置为${1}$的$0 ...

  2. PK淘宝BUY+,京东推出AR购物应用JD Dream

        今年双十一淘宝推出了虚拟现实VR购物"BUY+",用户可以在虚拟环境中选购商品.那作为竞争对手的京东将使出什么绝招呢?在近日上海举办的谷歌开发者大会上得到了答案.会上京东推 ...

  3. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  4. Dream It Possible

    反复听着Dream It Possible,想起自己的华为岁月,百感交集!

  5. POJ 题目2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 787 ...

  6. 第一篇英文短文《It All Starts With A Dream》

    http://www.ximalaya.com/#/17209107/sound/6883165 Dreaming. Do you or don’t you? Do you dream about t ...

  7. POJ 2411 Mondriaan&#39;s Dream

    状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...

  8. Big Chocolate

    Big Chocolate 题目链接:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=19127 Big Chocolat ...

  9. Dividing a Chocolate(zoj 2705)

    Dividing a Chocolate zoj 2705 递推,找规律的题目: 具体思路见:http://blog.csdn.net/u010770930/article/details/97693 ...

随机推荐

  1. 9.Symbol

    Symbol Symbol 概述 ES5 的对象属性名都是字符串,这容易造成属性名的冲突.比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin 模式),新方法的名字就有可能与现有 ...

  2. javascript图形动画设计--画简单正弦波

        <!doctype html> <html> <head> <meta charset="utf-8"> <title ...

  3. 欢迎来到GIS思考者的博客www.gisthinker.com

    我是一名GIS爱好者,这是我的个人博客,欢迎点击: GIS思考者:www.gisthinker.com

  4. 使用FileSystemWatcher监视指定目录

    使用 FileSystemWatcher 监视指定目录中的更改.可监视指定目录中的文件或子目录的更改. 以下是一个简单的实例,用来监控指定目录下文件的新增.删除.重命名等情况(文件内容更改会触发多次, ...

  5. uestc 1709 Binary Operations 位运算的灵活运用

    Binary Operations Time Limit: 2000 ms Memory Limit: 65535 kB Solved: 56 Tried: 674   Description   B ...

  6. HDU 2045 RPG难题

    http://acm.hdu.edu.cn/showproblem.php?pid=2045 这道题也是用倒推: 先假设前n-2个块都已经涂好,涂第n-1块时有以下两种情况: 1.n-1和1相同,则n ...

  7. BZOJ4659:lcm

    传送门 题目所给的不合法的条件可以转化为 \[\exists p,p^2|gcd(a,b) \Leftrightarrow \mu(gcd(a,b))\ne 0\] 那么 \[ans=\sum_{a= ...

  8. 02--CSS的继承性和层叠性

    一 继承性 css有两大特性:继承性和层叠性 面向对象语言都会存在继承的概念,在面向对象语言中,继承的特点:继承了父类的属性和方法.那么我们现在主要研究css,css就是在设置属性的.不会牵扯到方法的 ...

  9. 【转载】shell实例手册

    原文地址:shell实例手册  作者:没头脑的土豆 shell实例手册 0说明{ 手册制作: 雪松 更新日期: -- 欢迎系统运维加入Q群: 请使用"notepad++"打开此文档 ...

  10. easyui树形菜单实现

    需求:读取路径配置中的相对路径获取对应的子文件夹及其子文件并形成树形结构,加载xml文件,输入搜索关键字匹配xml里面的value节点的值对应的contact值的集合并进行搜索 例如:输入b,找到xm ...