题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5521


题意:有1-n共n个点,给出m个块(完全图),并知道块内各点之间互相到达花费时间均为ti。已知两人分别在点1和点n,求在哪些点相遇能使得花费时间最短。


题解:显然先想到从点1和点n分别求最短路,然后枚举点找出哪些点是相遇花费时间最少的。但是这题边太多了,假设一个完全图里有x个点,那边就有x*(x-1)/2条了,必须化简其边。一个可行的办法是给每个完全图增加两个点,分别为入点和出点,入点向其中的点连边,其中的点再向出点连边,权均为0,出点向入点连边,权为ti,边数就化简为2*x了。

代码实现:
 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
const int N = ;
const int M = ;
struct edge {
int to;
ll cost;
edge(int _to, ll _cost):to(_to),cost(_cost){}
};
typedef pair<ll, int> P;// first是最短距离,second是顶点的编号
int V;
vector<edge>G[N];
ll d[][N];//点1 和 点n 到达其他点的最短时间
void dij(int id, int s) {
priority_queue<P, vector<P>, greater<P> > que;
for(int i = ; i <= V; ++i) d[id][i] = INF;
d[id][s] = ;
que.push(P(, s)); while(!que.empty()) {
P p = que.top(); que.pop();
int v = p.second;
if(d[id][v] < p.first) continue;
int num = G[v].size();
for(int i = ; i < num; ++i) {
edge e = G[v][i];
if(d[id][e.to] > d[id][v] + e.cost) {
d[id][e.to] = d[id][v] + e.cost;
que.push(P(d[id][e.to], e.to));
}
}
}
}
int main() {
int k, T, t, n, m, i, s, x, u, v;
scanf("%d", &T);
for(k = ; k <= T; ++k) {
for(i = ; i < N; ++i) G[i].clear();
scanf("%d%d", &n, &m);//点数,集合(完全图)数目
for(i = ; i <= *m; i += ) {
u = n+i;//入点
v = n+i+;//出点
scanf("%d%d", &t, &s);//时间,集合中点数
while(s--) {
scanf("%d", &x);
G[u].push_back(edge(x, ));
G[x].push_back(edge(v, ));
}
G[v].push_back(edge(u, t));
}
V = n+*m;
dij(, );
dij(, n);
/*
puts("-----------------");
for(i = 1; i <= n; ++i) {
printf("%lld, %lld\n", d[0][i], d[1][i]);
}
puts("-----------------");
*/
ll mi = INF;
int cnt = ;
ll a = ;
for(i = ; i <= n; ++i) {
if((a = max(d[][i], d[][i])) < mi) {
mi = a;
}
}
printf("Case #%d: ", k);
if(mi == INF) {
printf("Evil John\n");
}
else {
int f = ;
printf("%lld\n", mi);
for(i = ; i <= n; ++i) {
a = max(d[][i], d[][i]);
if(a == mi) {
if(f) putchar(' ');
printf("%d", i);
f = ;
}
}
puts("");
}
}
return ;
}

2667ms

hdu 5521 Meeting(最短路)的更多相关文章

  1. HDU 5521.Meeting 最短路模板题

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  2. HDU 5521 Meeting(虚拟节点+最短路)

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  3. HDU 5521 Meeting【最短路】

    今天旁观了Angry_Newbie的模拟区域赛(2015shenyang) 倒着看最先看的M题,很明显的最短路问题,在我看懂的时候他们已经开始敲B了. 后来听说D过了很多人.. D题一看是个博弈,给了 ...

  4. HDU 5521 Meeting (最短路,dijstra)

    题意:有N个点,两个人,其中一个人住在点1,另一个人住在点n,有M个点集,集合内的数表示任意两点的距离为dis ,现在问,如果两个人要见面, 需要最短距离是多少,有哪几个点能被当成见面点. 析:分别对 ...

  5. HDU 5521 [图论][最短路][建图灵感]

    /* 思前想后 还是决定坚持写博客吧... 题意: n个点,m个集合.每个集合里边的点是联通的且任意两点之间有一条dis[i]的边(每个集合一个dis[i]) 求同时从第1个点和第n个点出发的两个人相 ...

  6. HDU 5521 Meeting

    2015 ACM / ICPC 沈阳站现场赛 M题 最短路 设置N+M个节点,前N个节点是Block,后M个节点是Set,每一组Set中的点向该Set连边,从1和n开始分别求最短路.注意爆int. # ...

  7. HDU - 5521 Meeting (Dijkstra)

    思路: 看了好久才看懂题意,文中给了n个点,有m个集合,每个集合有s个点,集合内的每两个点之间有一个权值为t的边,现在有两个人,要从1号点,和n号点,走到同一个顶点,问最少花费以及花费最少的点. 那就 ...

  8. HDU 5521:Meeting(最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=5521 Meeting Problem Description   Bessie and her friend E ...

  9. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

随机推荐

  1. JAVA练手--文件操作

    1. File类 主要作用:用于文件和文件夹的创建.查找.删除等操作 public static void main(String[] args) throws IOException { File ...

  2. CentOS和RedHat等系列系统 yum源配置、时间同步

    一.yum源配置 1,进入yum源配置目录cd /etc/yum.repos.d 2,备份系统自带的yum源mv CentOS-Base.repo CentOS-Base.repo.bk下载163网易 ...

  3. Spring注解_详解

    @Autowired 注释 将 @Autowired 注释标注在成员变量上   import org.springframework.beans.factory.annotation.Autowire ...

  4. 167 -两个Sum II - 输入数组已排序

    给定已按升序排序的整数数组,找到两个数字,使它们相加到特定的目标数. 函数twoSum应返回两个数字的索引,以便它们加起来到目标,其中index1必须小于index2. 注意: 您返回的答案(inde ...

  5. OI中的一些模板

    线性筛 #include"cstdio" #include"cstring" #include"iostream" #include&quo ...

  6. 在Ubuntu 14.04.1 LTS 上安装gettext失败

    使用apt-get install -f,因为有额外的依赖.

  7. 常用到的简单命令 Sublime Git NPM WindowsCMD MacTerminal(Unix命令) Vim

    sublime 选择标签及其内容 ctrl+shift+a连续按两次 调出Package console: Mac: command + shift + p 安装插件: 1.调出 Package co ...

  8. base64编码以及url safe base64是怎么工作的?

    原文转自 http://www.yanshiba.com/archives/638 1: 为什么需要base64? ASCII码一共规定了128个字符的编码,这128个符号,范围在[0,127]之间. ...

  9. 平台支持的从经典部署模型到 Azure Resource Manager 的 IaaS 资源迁移

    本文介绍如何才能将基础结构即服务 (IaaS) 资源从经典部署模型迁移到 Resource Manager 部署模型. 用户可以阅读有关 Azure Resource Manager 功能和优点的更多 ...

  10. pt-summary

    pt-summary主要是用来统计机器信息: [root@mxqmongodb2 bin]# ./pt-summary # Percona Toolkit System Summary Report ...