kruskal重构树本质就是给并查集显式建树来替代可持久化并查集。将边按困难度从小到大排序后建出该树,按dfs序建主席树即可。查询时跳到深度最浅的满足在该重要度下已被合并的点,在子树内查询第k大。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define M 500010
int n,m,q,a[N],root[N],value[N],fa[N],p[N],size[N],dfn[N],id[N],f[N][],lastans,tot,cnt=,t=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}e[M];
struct data2{int to,nxt;
}edge[N];
struct data3{int l,r,x;
}tree[N<<];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=;dfn[++cnt]=k;id[k]=cnt;
for (int i=p[k];i;i=edge[i].nxt)
{
dfs(edge[i].to);
size[k]+=size[edge[i].to];
}
}
void ins(int &k,int l,int r,int x)
{
tree[++cnt]=tree[k],k=cnt;tree[k].x++;
if (l==r) return;
int mid=l+r>>;
if (x<=mid) ins(tree[k].l,l,mid,x);
else ins(tree[k].r,mid+,r,x);
}
int query(int x,int y,int l,int r,int p)
{
if (!y) return -;
if (l==r) return p<=tree[y].x-tree[x].x?l:-;
int mid=l+r>>;
if (p<=tree[tree[y].r].x-tree[tree[x].r].x) return query(tree[x].r,tree[y].r,mid+,r,p);
else return query(tree[x].l,tree[y].l,l,mid,p-tree[tree[y].r].x+tree[tree[x].r].x);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3551.in","r",stdin);
freopen("bzoj3551.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),q=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=m;i++) e[i].x=read(),e[i].y=read(),e[i].z=read();
sort(e+,e+m+);
for (int i=;i<=n*;i++) fa[i]=i;tot=n;
for (int i=;i<=m;i++)
if (find(e[i].x)!=find(e[i].y))
{
value[++tot]=e[i].z;
addedge(tot,find(e[i].x)),addedge(tot,find(e[i].y));
f[find(e[i].x)][]=tot,f[find(e[i].y)][]=tot;
fa[find(e[i].x)]=tot,fa[find(e[i].y)]=tot;
}
for (int i=;i<=tot;i++) if (!f[i][]) f[i][]=i;
for (int j=;j<=;j++)
for (int i=;i<=tot;i++)
f[i][j]=f[f[i][j-]][j-];
for (int i=;i<=tot;i++)
if (f[i][]==i) dfs(i);
cnt=;
for (int i=;i<=tot;i++)
{
root[i]=root[i-];
ins(root[i],-,1E9,dfn[i]>n?-:a[dfn[i]]);
}
while (q--)
{
int x=read(),y=read(),z=read();
if (~lastans) x^=lastans,y^=lastans,z^=lastans;
for (int j=;~j;j--) if (value[f[x][j]]<=y) x=f[x][j];
lastans=query(root[id[x]-],root[id[x]+size[x]-],-,1E9,z);
printf("%d\n",lastans);
}
return ;
}

BZOJ3551 ONTAK2010Peaks加强版(kruskal重构树+dfs序+主席树)的更多相关文章

  1. BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]

    3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...

  2. BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增

    建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...

  3. 【bzoj3545/bzoj3551】[ONTAK2010]Peaks/加强版 Kruskal+树上倍增+Dfs序+主席树

    bzoj3545 题目描述 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询 ...

  4. 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树

    这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...

  5. BZOJ3551: [ONTAK2010]Peaks加强版【Kruskal重构树】【主席树】

    重要的事情说三遍 不保证图联通 不保证图联通 不保证图联通 那些和我一样认为重构树是点数的童鞋是要GG Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个 ...

  6. bzoj 3551 kruskal重构树dfs序上的主席树

    强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...

  7. BZOJ3551 Peaks加强版 [Kruskal重构树,主席树]

    BZOJ 思路 我觉得这题可持久化线段树合并也可以做 我觉得这题建出最小生成树之后动态点分治+线段树也可以做 还是学习一下Kruskal重构树吧-- Kruskal重构树,就是在做最小生成树的时候,如 ...

  8. 2018.09.30 bzoj3551:Peaks加强版(dfs序+主席树+倍增+kruskal重构树)

    传送门 一道考察比较全面的题. 这道题又用到了熟悉的kruskal+倍增来查找询问区间的方法. 查到询问的子树之后就可以用dfs序+主席树统计答案了. 代码: #include<bits/std ...

  9. BZOJ_3545_[ONTAK2010]Peaks_主席树+倍增+kruscal重构树+dfs序

    BZOJ_3545_[ONTAK2010]Peaks_主席树+倍增+kruscal重构树 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道 ...

随机推荐

  1. Qt QStringLiteral

    zz 解释QStringLiteral 原文发表于woboq网站  QStringLiteral explained 转载 原作者: Olivier Goffart 译者:zzjin QStringL ...

  2. 使用Python进行分布式系统协调 (ZooKeeper/Consul/etcd)

    来源:naughty 链接:my.oschina.net/taogang/blog/410864 笔者之前的博文提到过,随着大数据时代的到来,分布式是解决大数据问题的一个主要手段,随着越来越多的分布式 ...

  3. RHCE模拟考试

    真实考试环境说明: 你考试所用的真实物理机器会使用普通账号自动登陆,登陆后,桌面会有两个虚拟主机图标,分别是system1和system2.所有的考试操作都是在system1和system2上完成.S ...

  4. [bzoj1500][luogu2042][cogs339][codevs1758]维修数列(维护数列)

    先给自己立一个flag 我希望上午能写完 再立一个flag 我希望下午能写完. 再立一个flag 我希望晚上能写完... 我终于A了... 6700+ms...(6728) 我成功地立了3个flag. ...

  5. Python小白学习之文件内建函数

    文件内建函数: 2018-10-24 23:40:02   简单介绍: open()打开文件 read()读取文件(其实是输入文件里的内容到read函数,类似于get(url),所以下面的图片备注的是 ...

  6. spring cloud 入门系列七:基于Git存储的分布式配置中心--Spring Cloud Config

    我们前面接触到的spring cloud组件都是基于Netflix的组件进行实现的,这次我们来看下spring cloud 团队自己创建的一个全新项目:Spring Cloud Config.它用来为 ...

  7. phpcms v9手机站不支持组图($pictureurls)的修改

    phpcms v9自带的手机门户网站,有时候我们需要用到组图功能$pictureurls,我在做的时候发现,如果$pictureurls中只有一张图片会正常显示,但是如果有两张或两张以上的图片的时候, ...

  8. eBay:美国各州最受欢迎的产品品类

    雨果网从美国媒体<商业内幕>8月26日的报道中获悉,电商巨头eBay近日发布了美国各州最受欢迎的产品品类.包括:加州人青睐女性高端配件,而新泽西 州的男人喜欢古龙香水.相比这些华丽配饰而言 ...

  9. Linux 发展史与vm安装linux centos 6.9

    操作系统 是一个人与计算机硬件的中介. Linux操作系统 开源代码的.自由传播的类Unix操作系系统软件: 多用户.多任务.多线程.多CPU的操作系统. 服务器端.嵌入式开发.个人pc桌面,服务器领 ...

  10. hive on hbase 数据表关联

    有时,数据可以容易的存储在hive中,但是要导入到hbase里,可以不用写MR程序来操作,可以使用hive on hbase方式来创建相应的表关联关系来将hive中的数据导入到对应的hbase的表里, ...