SparkGraphx计算指定节点的N度关系节点
直接上代码:
package horizon.graphx.util import java.security.InvalidParameterException import horizon.graphx.util.CollectionUtil.CollectionHelper
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag /**
* Created by yepei.ye on 2017/1/19.
* Description:用于在图中为指定的节点计算这些节点的N度关系节点,输出这些节点与源节点的路径长度和节点id
*/
object GraphNdegUtil {
val maxNDegVerticesCount = 10000
val maxDegree = 1000 /**
* 计算节点的N度关系
*
* @param edges
* @param choosedVertex
* @param degree
* @tparam ED
* @return
*/
def aggNdegreedVertices[ED: ClassTag](edges: RDD[(VertexId, VertexId)], choosedVertex: RDD[VertexId], degree: Int): VertexRDD[Map[Int, Set[VertexId]]] = {
val simpleGraph = Graph.fromEdgeTuples(edges, 0, Option(PartitionStrategy.EdgePartition2D), StorageLevel.MEMORY_AND_DISK_SER, StorageLevel.MEMORY_AND_DISK_SER)
aggNdegreedVertices(simpleGraph, choosedVertex, degree)
} def aggNdegreedVerticesWithAttr[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED], choosedVertex: RDD[VertexId], degree: Int, sendFilter: (VD, VD) => Boolean = (_: VD, _: VD) => true): VertexRDD[Map[Int, Set[VD]]] = {
val ndegs: VertexRDD[Map[Int, Set[VertexId]]] = aggNdegreedVertices(graph, choosedVertex, degree, sendFilter)
val flated: RDD[Ver[VD]] = ndegs.flatMap(e => e._2.flatMap(t => t._2.map(s => Ver(e._1, s, t._1, null.asInstanceOf[VD])))).persist(StorageLevel.MEMORY_AND_DISK_SER)
val matched: RDD[Ver[VD]] = flated.map(e => (e.id, e)).join(graph.vertices).map(e => e._2._1.copy(attr = e._2._2)).persist(StorageLevel.MEMORY_AND_DISK_SER)
flated.unpersist(blocking = false)
ndegs.unpersist(blocking = false)
val grouped: RDD[(VertexId, Map[Int, Set[VD]])] = matched.map(e => (e.source, ArrayBuffer(e))).reduceByKey(_ ++= _).map(e => (e._1, e._2.map(t => (t.degree, Set(t.attr))).reduceByKey(_ ++ _).toMap))
matched.unpersist(blocking = false)
VertexRDD(grouped)
} def aggNdegreedVertices[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED],
choosedVertex: RDD[VertexId],
degree: Int,
sendFilter: (VD, VD) => Boolean = (_: VD, _: VD) => true
): VertexRDD[Map[Int, Set[VertexId]]] = {
if (degree < 1) {
throw new InvalidParameterException("度参数错误:" + degree)
}
val initVertex = choosedVertex.map(e => (e, true)).persist(StorageLevel.MEMORY_AND_DISK_SER)
var g: Graph[DegVertex[VD], Int] = graph.outerJoinVertices(graph.degrees)((_, old, deg) => (deg.getOrElse(0), old))
.subgraph(vpred = (_, a) => a._1 <= maxDegree)
//去掉大节点
.outerJoinVertices(initVertex)((id, old, hasReceivedMsg) => {
DegVertex(old._2, hasReceivedMsg.getOrElse(false), ArrayBuffer((id, 0))) //初始化要发消息的节点
}).mapEdges(_ => 0).cache() //简化边属性 choosedVertex.unpersist(blocking = false) var i = 0
var prevG: Graph[DegVertex[VD], Int] = null
var newVertexRdd: VertexRDD[ArrayBuffer[(VertexId, Int)]] = null
while (i < degree + 1) {
prevG = g
//发第i+1轮消息
newVertexRdd = prevG.aggregateMessages[ArrayBuffer[(VertexId, Int)]](sendMsg(_, sendFilter), (a, b) => reduceVertexIds(a ++ b)).persist(StorageLevel.MEMORY_AND_DISK_SER)
g = g.outerJoinVertices(newVertexRdd)((vid, old, msg) => if (msg.isDefined) updateVertexByMsg(vid, old, msg.get) else old.copy(init = false)).cache()
prevG.unpersistVertices(blocking = false)
prevG.edges.unpersist(blocking = false)
newVertexRdd.unpersist(blocking = false)
i += 1
}
newVertexRdd.unpersist(blocking = false) val maped = g.vertices.join(initVertex).mapValues(e => sortResult(e._1)).persist(StorageLevel.MEMORY_AND_DISK_SER)
initVertex.unpersist()
g.unpersist(blocking = false)
VertexRDD(maped)
} private case class Ver[VD: ClassTag](source: VertexId, id: VertexId, degree: Int, attr: VD = null.asInstanceOf[VD]) private def updateVertexByMsg[VD: ClassTag](vertexId: VertexId, oldAttr: DegVertex[VD], msg: ArrayBuffer[(VertexId, Int)]): DegVertex[VD] = {
val addOne = msg.map(e => (e._1, e._2 + 1))
val newMsg = reduceVertexIds(oldAttr.degVertices ++ addOne)
oldAttr.copy(init = msg.nonEmpty, degVertices = newMsg)
} private def sortResult[VD: ClassTag](degs: DegVertex[VD]): Map[Int, Set[VertexId]] = degs.degVertices.map(e => (e._2, Set(e._1))).reduceByKey(_ ++ _).toMap case class DegVertex[VD: ClassTag](var attr: VD, init: Boolean = false, degVertices: ArrayBuffer[(VertexId, Int)]) case class VertexDegInfo[VD: ClassTag](var attr: VD, init: Boolean = false, degVertices: ArrayBuffer[(VertexId, Int)]) private def sendMsg[VD: ClassTag](e: EdgeContext[DegVertex[VD], Int, ArrayBuffer[(VertexId, Int)]], sendFilter: (VD, VD) => Boolean): Unit = {
try {
val src = e.srcAttr
val dst = e.dstAttr
//只有dst是ready状态才接收消息
if (src.degVertices.size < maxNDegVerticesCount && (src.init || dst.init) && dst.degVertices.size < maxNDegVerticesCount && !isAttrSame(src, dst)) {
if (sendFilter(src.attr, dst.attr)) {
e.sendToDst(reduceVertexIds(src.degVertices))
}
if (sendFilter(dst.attr, dst.attr)) {
e.sendToSrc(reduceVertexIds(dst.degVertices))
}
}
} catch {
case ex: Exception =>
println(s"==========error found: exception:${ex.getMessage}," +
s"edgeTriplet:(srcId:${e.srcId},srcAttr:(${e.srcAttr.attr},${e.srcAttr.init},${e.srcAttr.degVertices.size}))," +
s"dstId:${e.dstId},dstAttr:(${e.dstAttr.attr},${e.dstAttr.init},${e.dstAttr.degVertices.size}),attr:${e.attr}")
ex.printStackTrace()
throw ex
}
} private def reduceVertexIds(ids: ArrayBuffer[(VertexId, Int)]): ArrayBuffer[(VertexId, Int)] = ArrayBuffer() ++= ids.reduceByKey(Math.min) private def isAttrSame[VD: ClassTag](a: DegVertex[VD], b: DegVertex[VD]): Boolean = a.init == b.init && allKeysAreSame(a.degVertices, b.degVertices) private def allKeysAreSame(a: ArrayBuffer[(VertexId, Int)], b: ArrayBuffer[(VertexId, Int)]): Boolean = {
val aKeys = a.map(e => e._1).toSet
val bKeys = b.map(e => e._1).toSet
if (aKeys.size != bKeys.size || aKeys.isEmpty) return false aKeys.diff(bKeys).isEmpty && bKeys.diff(aKeys).isEmpty
}
}
其中sortResult方法里对Traversable[(K,V)]类型的集合使用了reduceByKey方法,这个方法是自行封装的,使用时需要导入,代码如下:
/**
* Created by yepei.ye on 2016/12/21.
* Description:
*/
object CollectionUtil {
/**
* 对具有Traversable[(K, V)]类型的集合添加reduceByKey相关方法
*
* @param collection
* @param kt
* @param vt
* @tparam K
* @tparam V
*/
implicit class CollectionHelper[K, V](collection: Traversable[(K, V)])(implicit kt: ClassTag[K], vt: ClassTag[V]) {
def reduceByKey(f: (V, V) => V): Traversable[(K, V)] = collection.groupBy(_._1).map { case (_: K, values: Traversable[(K, V)]) => values.reduce((a, b) => (a._1, f(a._2, b._2))) } /**
* reduceByKey的同时,返回被reduce掉的元素的集合
*
* @param f
* @return
*/
def reduceByKeyWithReduced(f: (V, V) => V)(implicit kt: ClassTag[K], vt: ClassTag[V]): (Traversable[(K, V)], Traversable[(K, V)]) = {
val reduced: ArrayBuffer[(K, V)] = ArrayBuffer()
val newSeq = collection.groupBy(_._1).map {
case (_: K, values: Traversable[(K, V)]) => values.reduce((a, b) => {
val newValue: V = f(a._2, b._2)
val reducedValue: V = if (newValue == a._2) b._2 else a._2
val reducedPair: (K, V) = (a._1, reducedValue)
reduced += reducedPair
(a._1, newValue)
})
}
(newSeq, reduced.toTraversable)
}
}
}
SparkGraphx计算指定节点的N度关系节点的更多相关文章
- JavaScript---网络编程(7)-Dom模型(节点间的层次关系,节点的增、删、改)
利用节点间的层次关系获取节点: 上一节讲了3中获取的方式: * ※※一.绝对获取,获取元素的3种方式:-Element * 1.getElementById(): 通过标签中的id属性值获来取该标签对 ...
- 基于Spark GraphX计算二度关系
关系计算问题描述 二度关系是指用户与用户通过关注者为桥梁发现到的关注者之间的关系.目前微博通过二度关系实现了潜在用户的推荐.用户的一度关系包含了关注.好友两种类型,二度关系则得到关注的关注.关注的好友 ...
- Spark 计算人员三度关系
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...
- Spark 计算人员二度关系
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...
- DOM节点关系,节点关系
DOM节点关系 定义 节点中的各种关系可以用传统的家族关系来描述,相当于把文档树比喻成家谱. 属性 [nodeType.nodeName.nodeValue] 每个节点都有这三个属性,且节点类型不同, ...
- js小功能合集:计算指定时间距今多久、评论树核心代码、字符串替换和去除。
1.计算指定时间距今多久 var date1=new Date('2017/02/08 17:00'); //开始时间 var date2=new Date(); //当前时间 var date3=d ...
- 探索未知种族之osg类生物---状态树与渲染树以及节点树之间的关系
节点树 首先我们来看一个场景构建的实例,并通过它来了解一下“状态节点”StateGraph 和“渲染叶”RenderLeaf 所构成的状态树,“渲染台”RenderStage 和“渲染元”Render ...
- GraphX实现N度关系
背景 本文给出了一个简单的计算图中每一个点的N度关系点集合的算法,也就是N跳关系. 之前通过官方文档学习和理解了一下GraphX的计算接口. N度关系 目标: 在N轮里.找到某一个点的N度关系的点集合 ...
- MySQL 树形结构 根据指定节点 获取其所有叶子节点
背景说明 需求:MySQL树形结构, 根据指定的节点,获取其下属的所有叶子节点. 叶子节点:如果一个节点下不再有子节点,则为叶子节点. 问题分析 1.可以使用类似Java这种面向对象的语言,对节点集合 ...
随机推荐
- httpclient org.apache.http.NoHttpResponseException: host:端口 failed to respond 错误原因和解决方法
原因:httpclient 之前与服务端建立的链接已经失效(例如:tomcat 默认的keep-alive timeout :20s),再次从连接池拿该失效链接进行请求时,就会保存. 解决方法:官方链 ...
- Wannafly挑战赛29题解
这套题目非常有意思啊23333--话说为啥没有上条先生的呢-- 传送门 \(A\) 御坂美琴 蠢了--首先先判总共加起来等不等于\(n\),不是的话就不行 然后dfs记录\(n\)不断分下去能分成哪些 ...
- [CISCO] 简单配置 Telnet 服务
[CISCO] 简单配置 Telnet 服务 一.Introduction Telnet 协议是一种应用层协议,使用于网际网路及区域网中,使用虚拟终端机的形式,提供双向.以文字字串为主的互动功能.属于 ...
- Google 推出新搜索引擎以查找数据集
简评:谷歌推出了一个用于寻找数据集的新搜索引擎,有点厉害! 该工具可以更轻松地访问 Web 上数千个数据存储库中的数百万个数据集,当前还处于测试版: 什么是 Dataset Search? 数 ...
- 常用的PHP超全局变量$_SERVER 收集整理
传送带:https://www.cnblogs.com/rendd/p/6182918.html
- POJ 2192
#include <iostream> #include <string> #define MAXN 500 using namespace std; bool dp[MAXN ...
- C#接口实现多态
我比较喜欢对感兴趣的理论进行反复的理解甚至理解背诵下来,接下来再复习一下什么叫多态(哈哈哈) 多态:在同一粒度视图下对相同类型的事物不做区别的统一操作 接下来看一下接口和引擎类是如何实现多态的: 一. ...
- 直接线性变换解法(DLT)用于标定相机
直接线性变换法是建立像点坐标和相应物点物方空间坐标之间直接的线性关系的算法.特点:不需要内外方位元素:适合于非量测相机:满足中.低精度的测量任务:可以标定单个相机. 1 各坐标系之间的关系推导直接线性 ...
- abp 依赖注入声明
public class SchedulerManager : ISingletonDependency { private ILogger logger; public SchedulerManag ...
- js数字格式化为千分位
方法1: 浏览器自带的一个方法 const num=12345.6789 num.toLocaleString();=>"12,345.679" 方法2: 正则匹配 func ...