Python Pandas找到缺失值的位置
python pandas判断缺失值一般采用 isnull()
,然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置。
首先对于存在缺失值的数据,如下所示
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10,6))
# Make a few areas have NaN values
df.iloc[1:3,1] = np.nan
df.iloc[5,3] = np.nan
df.iloc[7:9,5] = np.nan
0 1 2 3 4 5
0 0.520113 0.884000 1.260966 -0.236597 0.312972 -0.196281
1 -0.837552 NaN 0.143017 0.862355 0.346550 0.842952
2 -0.452595 NaN -0.420790 0.456215 1.203459 0.527425
3 0.317503 -0.917042 1.780938 -1.584102 0.432745 0.389797
4 -0.722852 1.704820 -0.113821 -1.466458 0.083002 0.011722
5 -0.622851 -0.251935 -1.498837 NaN 1.098323 0.273814
6 0.329585 0.075312 -0.690209 -3.807924 0.489317 -0.841368
7 -1.123433 -1.187496 1.868894 -2.046456 -0.949718 NaN
8 1.133880 -0.110447 0.050385 -1.158387 0.188222 NaN
9 -0.513741 1.196259 0.704537 0.982395 -0.585040 -1.693810
df.isnull()
会产生如下结果
0 1 2 3 4 5
0 False False False False False False
1 False True False False False False
2 False True False False False False
3 False False False False False False
4 False False False False False False
5 False False False True False False
6 False False False False False False
7 False False False False False True
8 False False False False False True
9 False False False False False False
df.isnull().any()
则会判断哪些”列”存在缺失值
0 False
1 True
2 False
3 True
4 False
5 True
7 dtype: bool
df[df.isnull().values==True] 可以只显示存在缺失值的行列,清楚的确定缺失值的位置。
0 1 2 3 4 5
1 1.090872 NaN -0.287612 -0.239234 -0.589897 1.849413
2 -1.384721 NaN -0.158293 0.011798 -0.564906 -0.607121
5 -0.477590 -2.696239 0.312837 NaN 0.404196 -0.797050
7 0.369665 -0.268898 -0.344523 -0.094436 0.214753 NaN
8 -0.114483 -0.842322 0.164269 -0.812866 -0.601757 NaN
Python Pandas找到缺失值的位置的更多相关文章
- pandas判断缺失值的办法
参考这篇文章: https://blog.csdn.net/u012387178/article/details/52571725 python pandas判断缺失值一般采用 isnull(),然而 ...
- [Python] Pandas 对数据进行查找、替换、筛选、排序、重复值和缺失值处理
目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处 ...
- Python pandas 0.19.1 Intro to Data Structures 数据结构介绍 文档翻译
官方文档链接http://pandas.pydata.org/pandas-docs/stable/dsintro.html 数据结构介绍 我们将以一个快速的.非全面的pandas的基础数据结构概述来 ...
- Python pandas快速入门
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...
- python pandas 中文件的读写——read_csv()读取文件
read_csv()读取文件1.python读取文件的几种方式read_csv 从文件,url,文件型对象中加载带分隔符的数据.默认分隔符为逗号read_table 从文件,url,文件型对象中加载带 ...
- python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)
# python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...
- Python Pandas操作Excel
Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...
- Python Pandas的使用 !!!!!详解
Pandas是一个基于python中Numpy模块的一个模块 Python在数据处理和准备⽅⾯⼀直做得很好,但在数据分析和建模⽅⾯就差⼀些.pandas帮助填补了这⼀空⽩,使您能够在Python中执 ...
- python & pandas链接mysql数据库
Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.con ...
随机推荐
- java高级---->Thread之ExecutorService的使用
今天我们通过实例来学习一下ExecutorService的用法.我徒然学会了抗拒热闹,却还来不及透悟真正的冷清. ExecutorService的简单实例 一.ExecutorService的简单使用 ...
- Android.mk(4) 依赖:目标编程的模式
https://www.jianshu.com/p/3777a585a8d0 另一种范式 我一直觉得,Makefile确实是C/C++程序员的良配,因为Makefile所使用的两种范式都是C/C++程 ...
- 如何验证 Email 地址:SMTP 协议入门教程
http://www.ruanyifeng.com/blog/2017/06/smtp-protocol.html 作者: 阮一峰 日期: 2017年6月25日 Email 是最常用的用户识别手段 ...
- C#中XML的读取
本文主要介绍在C#中有关XML的读取,写入操作. 1.XML的内容如下: <?xml version="1.0" encoding="utf-8" ?&g ...
- 关于nagios系统下使用shell脚本自定义监控插件的编写
在自已编写监控插件之前我们首先需要对nagios监控原理有一定的了解 Nagios的功能是监控服务和主机,但是他自身并不包括这部分功能,所有的监控.检测功能都是通过各种插件来完成的. 启动Nagios ...
- 移动端app跳转百度地图
http://lbsyun.baidu.com/index.php?title=uri/guide/helloworld(百度地图调起URI API)开发者只需按照接口规范构造一条标准的URI,便可在 ...
- python---使用pycharm运行py文件
在pycharm中新建一个.py的文件,那么如何使用pycharm来运行这个文件呢? 第一步:选择这个三角(即Edit configuration)进入设置 第二步:设置文件名和路径 第三步:设置完成 ...
- 爬虫之Scrapy详解
性能相关 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢. import requests def fetch_async(url): ...
- EDA优势
1.提供明确的表述性业务概念 在某些场景下,一个业务概念会被多个流程更改,如果此属性逻辑发生变化,其他关联的流程将无法知晓,导致bug产生 如:出于性能或其他因素考虑下,为A表增加一个冗余字段,操作A ...
- vue报错 Uncaught TypeError: Cannot read property ‘children ’ of null
Uncaught TypeError: Cannot read property ‘children ’ of null ratings未渲染完毕,就跳走goods了,取消默认跳转,即可