USACO Arithmetic Progressions(暴力)
题目请点我
题解:
这道题的题意是找出集合里全部固定长度为N的等差数列。集合内的元素均为P^2+q^2的形式(0<=p,q<=M)。时间要求5s内。本着KISS,直接暴力。
可是后来竟超时了。检查后发现是map的问题,本想利用map实现常数级的查找。可是显然map内部不是这种。所以对于普通的数据类型。数据量不大(250^2+250^2)的情况下还是利用数组标记查找好一点,get。
代码实现:
/*
ID: eashion
LANG: C++
TASK: ariprog
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <map>
#include <algorithm>
#define MAX 125000
using namespace std;
int N,M;
bool flag;
int num[MAX];
int mm[MAX];
bool test(int start,int len);
int main()
{
freopen("ariprog.in","r",stdin);
freopen("ariprog.out","w",stdout);
while( scanf("%d%d",&N,&M) != EOF ){
int pos = 0;
flag = false;
memset(mm,0,sizeof(mm));
for( int i = 0; i <= M; i++ ){
for( int j = 0; j <= M; j++ ){
int tmp = i*i+j*j;
if( mm[tmp] != 1 ){
num[pos] = tmp;
mm[tmp] = 1;
pos++;
}
}
}
sort(num,num+pos);
int up_B = (num[pos-1]-num[0])/(N-1);
for( int i = 1; i <= up_B; i++ ){
for( int j = 0; j < pos; j++ ){
if( test(num[j],i) ){
flag = true;
printf("%d %d\n",num[j],i);
}
if( num[j]+(N-1)*i > num[pos-1] ){
break;
}
}
}
if( flag == false ){
printf("NONE\n");
}
}
return 0;
}
bool test(int start,int len){
int tmp = start;
for( int i = 0; i < N; i++ ){
if( mm[tmp] != 1 ){
return false;
}
tmp += len;
}
return true;
}
USACO Arithmetic Progressions(暴力)的更多相关文章
- USACO Arithmetic Progressions 【构造等差数列】
USER: Jeremy Wu [wushuai2] TASK: ariprog LANG: C++ Compiling... Compile: OK Executing... Test 1: TES ...
- USACO 1.4 Arithmetic Progressions
Arithmetic Progressions An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb ...
- 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions
P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...
- E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)
You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...
- [Educational Codeforces Round 16]D. Two Arithmetic Progressions
[Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】
题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...
- (素数求解)I - Dirichlet's Theorem on Arithmetic Progressions(1.5.5)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...
随机推荐
- .Net Discovery 系列之二--string从入门到精通(下)
前两节我们介绍了string的两个基本特性,如果你觉得你已经比较全面的了解了string,那么就来看看这第3.4两节吧. 三.有趣的比较操作 在第一节与第二节中,我们分别介绍了字符串的恒定性与与驻留 ...
- 对一个前端使用AngularJS后端使用ASP.NET Web API项目的理解(3)
chsakell分享了一个前端使用AngularJS,后端使用ASP.NET Web API的项目. 源码: https://github.com/chsakell/spa-webapi-angula ...
- 在ASP.NET MVC中实现登录后回到原先的界面
有这样的一个需求:提交表单,如果用户没有登录,就跳转到登录页,登录后,跳转到原先表单提交这个页面,而且需要保持提交表单界面的数据. 提交表单的页面是一个强类型视图页,如果不考虑需要保持提交表单界面的数 ...
- CPU和线程的关系
比如,电脑开了两个程序qq和qq音乐,假设这两个程序都只有一个线程.人能够感觉到CPU切换的频率是一秒一次,假设当前cpu计算速度是1秒1次,那么我们就能明显感到卡顿,当聊天,点击发送按钮时候,qq音 ...
- Java进程线程理解
一个进程包括由操作系统分配的内存空间,包含一个或多个线程.一个线程不能独立的存在,它必须是进程的一部分.一个进程一直运行,直到所有的非守护线程都结束运行后才能结束. 多线程能满足程序员编写高效率的程序 ...
- 从Oracle迁移到MySQL的各种坑及自救方案
当企业内部使用的数据库种类繁杂时,或者有需求更换数据库种类时,都可能会做很多数据迁移的工作.有些迁移很简单,有些迁移可能就会很复杂,大家有没有考虑过为了顺利完成复杂的数据库迁移任务,都需要考虑并解决哪 ...
- 推荐一款移动端的web UI控件 -- mobiscroll
用mobiscroll 可实现ios系统自带的选择器控件效果,支持几乎所有的移动平台(iOS, Android, BlackBerry, Windows Phone 8, Amazon Kindle) ...
- js如何判断用户是在pc端和还是移动端访问
js如何判断用户是在pc端和还是移动端访问 来源:A5技术交流 作者:wofa 时间:2014-04-25收藏本页 最近一直在忙我们团队的项目“咖啡之翼”,在这个项目中,我们为移动平台提供了一个优秀的 ...
- 再有人问你volatile是什么,把这篇文章也发给他
在上一篇文章中,我们围绕volatile关键字做了很多阐述,主要介绍了volatile的用法.原理以及特性.在上一篇文章中,我提到过:volatile只能保证可见性和有序性,无法保证原子性.关于这部分 ...
- 第三方IDC性能测评主要指标
弹性计算性能弹性计费模式就是 "即用即付 ",最小单位可以按小时来计算.随着云计算负载的增长,企业购买服务器带宽时的资源. 1.弹性计算性能 弹性计费模式就是"即 ...