转载自

http://blog.sina.com.cn/s/blog_633750d90100hbco.html
连续小波变换的概念、操作、及时间尺度图的显示
最近很多网友问到关于连续小波变换的诸多问题,我用了点时间,写了个底层程序,提供给大家参考。 。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。 。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(,)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点:
。不可分的小波或者具有可分性质的方向性小波;
。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET.
。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议:
。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。
。做研究,有些话题太成熟了,对于小波本身几乎很难再做下去,要在方向性和几何性上下功夫。对此,我也做的工作很少,毕竟研究方向转了。
。看看DAUBECHIES,MALLAT,Minh N. Do的personal web,特别是preprint的文章,会有些启发。
。最终大家还是最好自己提一些新的XLET或算法出来,这样才是有挑战性的工作,否则我们永远是落后的。
。交叉领域和结合是值得做的,最近R2007也就增加了PCA+WAVELET等内容,还有用小波在数值分析领域求解偏微分等,多尺度现在是个很热的东西,SIAM为此都开了专门的期刊,这是数值分析最前沿的期刊可以看看。还有ELSEVIER的Applied and Computational Harmonic Analysis,这些虽然数学多了一点,但毕竟才有可能在工程上是“新”的。 大家可以到我的网站下载到.m文件
http://cem.ahu.edu.cn/Freecode/freecode.htm 各位共勉!!! 安徽大学 沙威
2007年9月5日
% 编程人 沙威 安徽大学
% ws108@ahu.edu.cn function CWT_EXE();
% 多个尺度连续小波变换的实现
clc;clear % 下载信号
load vonkoch
vonkoch=vonkoch(:); % 尺度1-32的连续小波变换
S_Min=;S_Max=; index=;
for scale=S_Max:-:S_Min;
index=index+;
cwt_coef(index,:)=CWT_FUNCTION(scale,*(scale),vonkoch);
end % 小波系数取模
cwtcoef_abs=abs(cwt_coef); % 显示
for index=S_Min:S_Max
max_coef=max(cwtcoef_abs(index,:)); % 系数模最大
min_coef=min(cwtcoef_abs(index,:)); % 系数模最小
ext=max_coef-min_coef; % 系数模跨度
cwtcoef_abs(index,:)=*(cwtcoef_abs(index,:)-min_coef)/ext; % 系数大小变换
end figure() subplot(,,);
plot(vonkoch);
xlabel('时间')
ylabel('幅度')
title('分形信号')
axis([ 0.02]) subplot(,,)
colormap(pink());
image(cwtcoef_abs)
set(gca,'YTick',::)
set(gca,'YTickLabel',:-:)
title('连续小波变换时间尺度图')
xlabel('时间')
ylabel('尺度') % 某个尺度的连续小波变换的M函数 % delta 小波变换的尺度
% N 小波函数的长度
% s 原始信号
% g 原始信号某个尺度下的小波变换系数 function g=CWT_FUNCTION(delta,N,s); % 原始信号长度
n=length(s); % 构造墨西哥帽子小波函数
for index_x=:N;
x=index_x-(N+)/;
phi_x(index_x)=((pi^(-/))*(/sqrt()))*(-x.*x/(delta^))*exp(-(x.*x)/(*delta^));
end;
phi_x=phi_x/norm(phi_x); % 能量归一化 % 对信号做卷积
g=conv(s,phi_x); % 卷积
g=wkeep(g,n); % 保持信号长度

对小波变换中DWT和CWT的理解的更多相关文章

  1. C#中对IDisposable接口的理解

    http://blog.sina.com.cn/s/blog_8abeac5b01019u19.html C#中对IDisposable接口的理解 本人最近接触一个项目,在这个项目里面看到很多类实现了 ...

  2. js中的回调函数的理解和使用方法

    js中的回调函数的理解和使用方法 一. 回调函数的作用 js代码会至上而下一条线执行下去,但是有时候我们需要等到一个操作结束之后再进行下一个操作,这时候就需要用到回调函数. 二. 回调函数的解释 因为 ...

  3. [BS-18] 对OC中不可变类的理解

    对OC中不可变类的理解 OC中存在很多不可变的类(如NSString,NSAttributedString,NSArray,NSDictionary,NSSet等),用它们创建的对象存在于堆内存中,但 ...

  4. oracle中 connect by prior 递归算法 -- 理解

    oracle中 connect by prior 递归算法 -- 理解 http://blog.163.com/xxciof/blog/static/7978132720095193113752/  ...

  5. MVC架构中的Repository模式 个人理解

    关于MVC架构中的Repository模式   个人理解:Repository是一个独立的层,介于领域层与数据映射层(数据访问层)之间.它的存在让领域层感觉不到数据访问层的存在,它提供一个类似集合的接 ...

  6. 关于MySQL中的自联结的通俗理解

    关于MySQL中的自联结的通俗理解 前言:最近在通过SQL必知必会这本书学习MySQL的基本使用,在学习中也或多或少遇到了点问题,我也正好分享给大家,我的这篇博客用到的所有表格的代码都是来自SQL必知 ...

  7. 关于Autosar中的NM模块的理解

    本篇文章主要介绍AutoSar中关于NM模块的理解. 阅读本篇文章希望达到的目的: 1. NM(网络管理)是用来做什么的: 2. AutoSar中网络管理的原理: 3.项目实例介绍 1. NM(网络管 ...

  8. Spring中Bean及@Bean的理解

    Spring中Bean及@Bean的理解 Bean在Spring和SpringMVC中无所不在,将这个概念内化很重要,下面分享一下我的想法: 一.Bean是啥 1.Java面向对象,对象有方法和属性, ...

  9. Oracle中rownum和rowid的理解

    rownum,rowid都叫伪列. 但是,rownum是逻辑上的编号,且其值总是从1开始,每行的rounum不是固定的.而rowid是“物理”编号.若数据库文件没有移动,则每行的 rowid一般是固定 ...

随机推荐

  1. 【第三十一章】 elk(2)- 第二种架构(最常用架构)

    参考:http://linuxg.blog.51cto.com/4410110/1761757 最常用架构: 一.安装redis 1.下载:http://redis.io/download 2.解压后 ...

  2. 【Coursera】Technology :Fifth Week(2)

    The Ethernet Story Bob Metcalfe Bob 参与了 Xerox 研究项目,着手解决建造一个处处连接个人计算机的架构.当时,他们刚刚完成了 Internet 的开端 -具有 ...

  3. html禁止文本输入框记录输入记录,单击input出现输入过的记录

    其实方法很简单,只需要在input文本输入框中加一条autocomplete="off"属性即可. <input type="text" name=&qu ...

  4. Android Fragment与Activity通讯详解

    与activity通讯 尽管fragment的实现是独立于activity的,可以被用于多个activity,但是每个activity所包含的是同一个fragment的不同的实例. Fragment可 ...

  5. Java设计模式(五)——适配器模式

    先举一个例子解释一下生活中的适配器模式:公司老总要求工程部经理来汇报一下公司内部的消防设备使用和维护情况.接到通知后,工程部经理老宋找了专门负责消防设备统计的维护人员小王,请他调出了去年全年的维护记录 ...

  6. hihoCoder 1636 Pangu and Stones

    hihoCoder 1636 Pangu and Stones 思路:区间dp. 状态:dp[i][j][k]表示i到j区间合并成k堆石子所需的最小花费. 初始状态:dp[i][j][j-i+1]=0 ...

  7. (转)TeamViewer三种许可证的区别是什么?

    xu言: 这几天在使用teamview对它的许可证做了一些了解,看到这个好像是官方的写的挺不错.留作收藏 PS:https://www.uret.in/  顺便也发现了一个不错的网站 很多想要购买Te ...

  8. (GoRails )使用Vue.js制作拖拉list功能(v5-8)

    视频5 改进视觉效果,让list看起来更舒服.新增横向滚动功能. 参考我的trello:https://trello.com/b/BYvCBpyZ/%E6%AF%8F%E6%97%A5%E8%AE%B ...

  9. codeforces 930b//Game with String// Codeforces Round #468 (Div. 1)

    题意:一个串,右循环移位后,告诉你第一个字母,还能告诉你一个,问你能确定移位后的串的概率. 用map记录每个字母出现的位置.对于每个字母,用arr[j][k]记录它的所有出现位置的后j位是字母k的个数 ...

  10. ACM-ICPC Beijing Online A The Book List

    比赛的时候一眼就看出是字典树+DFS了,然而这题题意比较难理解,还有不少WA点.所以很快敲完之后和队友反复斟酌题意,修改代码.结果还是交了3发WA.最后猜测目录和书在同一个母目录域下同名是不同的,增加 ...