本篇文章内容来自2016年TOP100summit 链家网大数据部资深研发架构师李小龙的案例分享。

编辑:Cynthia

李小龙:链家网大数据部资深研发架构师,负责大数据工具平台化相关的工作。专注于数据仓库、任务流调度、元数据管理、自助报表等领域。之前在百度从事了四年的数据仓库和工具平台的研发工作。

导读:链家网大数据部门负责收集加工公司各产品线的数据,并为链家集团各业务部门提供数据支撑。本文分享链家网大数据部成立后,在发展变革中遇到的一些问题和挑战,架构团队是如何构建一站式的数据平台来解决获取数据的效率问题,如何构建多层次系统来组建大数据架构体系。重点介绍团队早期作为数据报表支持者,向当下数据平台方转变的这一历程,通过对数据处理流程的梳理,构建一体化的数据接入/计算/展示的开放平台,提升数据运转效率,快速满足集团内数据需求。

一、背景简介

链家网自2014年成立后,全面推进020战略,打造线上线下房产服务闭环,公司业务迅速增长,覆盖全国28个地区,门店数量超过8000家。随着链家集团积累数据的不断增多,在2015年专门成立了大数据部,推进集团内各公司数据资产的整合,以数据驱动公司业务的发展。

链家将房地产交易大数据分为物的数据、人的数据、行为数据三大块来进行研究。

● 物的数据主要是构建了全国的楼盘字典,拥有专业的摄影测量团队实地勘测,收录了7000万套房屋的详细信息,包括小区周边、人文素养等等。

● 人的数据,包括买家、业主、经纪人三方,目前在全国有13万经纪人,对经纪人的背景、从业年限、资历、专业能力、历史行为有详细记录,给客户更加精准的参考。目前链家网服务的买家和卖家超过两千多万,对用户进行画像,然后推荐更加合适的房屋。

● 行为数据,包括线上行为和多样的线下行为,譬如线上的浏览日志,线下的看房行程等。

通过分析这些数据,找到与业务的结合点,目前大数据在链家网具体的应用场景有房屋估价、智能推荐、房客图谱、BI报表。

二、大数据从0到1的架构落地

大数据部成立以后,借鉴业界成熟的数据仓库方案,设计的早期架构图如图1所示:

图1 数据仓库早期架构

在这个阶段我们主要做了三件事:

● 搭建hadoop集群,初期只有10多台机器,随着业务的发展,集群规模也在不断增长。

● 采用HIVE构建数据仓库,数据仓库里的数据来源于业务方的mysql数据库和log日志。

● 定制化报表开发,按照业务方的需求,case by case做一些BI报表展示,满足业务方对数据的分析。

这个架构简单清晰,这样做有三个好处:

● 使用开源的组件,方便扩展和运维;

● 采用业界成熟的数据仓库方案,数据仓库分层模型设计;

● 有利于技术人员培养,技术团队在成长初期技术选型需要考虑市场上人员情况,所以选择了使用范围广的技术。

具体讲讲HIVE数据仓库的模型,该模型一共分为5层。

● 最下面是STG层,用来存储源数据,保持与数据源完全一致;

● 第二层是ODS层,会进行数据清理等工作,譬如不同业务系统的城市编码不一致,有的001代表北京,有的110代表北京,在ODS层进行维度编码的统一处理。还有不同业务系统的金钱单位不一致,有的是元、有的是分,在此统一采用分为单位,保留两位小数;

● 最上面是报表层,根据业务需求进行加工处理,产出报表数据。至于数据仓库遵循的范式结构,目前没有严格一致地规范,星型模型和雪花模型都有采用。

早期的大数据架构落地后,支撑了将近一年时间,从2015年初到2016年初,取得了不错的效果。

● 收集汇总了集团内各个分公司、各条产品线的数据,便于交叉分析。通过对比分析数据,能帮助业务系统更好的发展。

● 支撑集团内大部分报表需求,帮助运营人员改进决策,数据驱动。 巧妇难为无米之炊,当数据仓库积累了大量历史数据,数据挖掘的同学就能进行深度分析。

三、大数据平台化体系的建设

为什么要做平台化?

主要原因还是随着公司业务的快速发展,数据需求迅速增多,早期的大数据架构遇到一些新挑战。

● 数据需求快速增长:链家业务增长到全国多个城市,各个城市的报表需求很多,而且由于各个地方的政策不太一样,报表需求也有所差异,此外还有大量的临时统计数据需求。为了能快速响应需求,我们提出平台化,通过提供各种数据处理和探索工具,让用户自助高效地获取一些数据。

● 数据治理亟需规范:各条产品线的数据都进入仓库以后,由于需求很急迫,一些建模规范未能有效执行,导致仓库里数据冗余繁杂,wiki更新维护不及时,难以清晰掌握数据仓库里数据整体概况。指标定义不清晰,一些数据需求人员按照自己的理解制定指标含义,结果上线后,发现不同的人对指标理解不一致,导致返工。

● 数据安全迫在眉睫:对数据的申请需要进行集中的审批管理,对数据的使用需要进行持续的追踪备案,防止数据泄露。

为了解决存在的这些问题,我们提出了新的平台化架构图。平台化架构数据流图如图2所示:

图2 平台化架构数据流图

对比新老架构图可以看出,首先是多了红色的实时数据流部分,日志log采用flume对接Kafka消息队列,然后使用SparkStreaming/Storm进行日志的分析处理,处理后的结果写入到Hbase供API服务使用。

另外,在OLAP部分,引入了Kylin作为MOLAP处理引擎,会定期将Hive里面的星型模型数据处理后写入Hbase,然后Kylin对外提供数据分析服务,提供亚秒级的查询速度。

图中右边是数据治理相关组件,有数据权限、数据质量、元数据等。在新的平台化架构图中,我们将大数据工程平台分为三层,由上到下分别是应用层、工具层、基础层,如图3所示:

图3 大数据工程平台

3.1 应用层

应用层,主要面向数据开发人员和数据分析师,重点解决三类问题:

● BI报表产出速度如何加快,缩短业务方从提出数据需求到报表产出的时间周期。

● 数据治理,对公司的核心数据指标进行统一定义,对元数据进行管理,集中数据的审批流程。

● 数据流转集中管控,数据在各个系统间的流转统一走元数据管理平台,能很方便排查定位问题。

为了加快BI报表产出,我们开发了地动仪自助报表,在数据源已经就绪的情况下,目标是5分钟完成一个通用报表的配置,得到类似 excel表格、柱状图这种图表效果,目前已经支持 mysql、presto 、kylin等各种数据源。另外,如果需要定制化的Dashboard报表,自助报表也支持复用一些图表组件。

元数据管理系统

元数据对公司的所有数据信息进行管理维护,通过数据地图,可以看到公司数据仓库里的所有数据以及数据信息的变更情况,方便用户进行搜索查询。指标图书馆对指标进行详细的描述定义,而且可以对每个指标关联的维度进行管理,维度表以及维度取值的描述。另外,基于元数据我们还可以做数据血缘关系,方便追踪数据的上下游关系,能够快速定位排查问题。

元数据管理系统上线后,取得了以下三个成果:

● 所有表的创建修改都经过元数据系统,可以实时清晰掌握仓库里的数据情况。

● 成立了公司级别的数据委员会,统一制定公司的核心指标,各个部门可以自定义二级指标。

● 数据的接入和流出都通过元数据系统集中管控,所有的日志接入、mysql接入通过元数据来配置,数据申请也是走的元数据,方便集中管理运维。

3.2 工具层

工具层定位于通用工具组件的开发,为上层应用提供能力支撑,同时解决用户在使用大数据计算中遇到的实际困难。譬如ETL作业任务很多、追踪排查问题比较麻烦、数据修复时间长、Hue hive查询速度比较慢、一个sql需要等待几分钟。

图4是实际工作中一个典型的数据任务链路图,抽取了作业链路中的一部分。

图4 数据任务链路图

从图中我们可以看到以下信息:

● 任务链路特别长,可能有6层之多;

● 任务种类多,既有mysql导入任务,也有hive-sql加工任务,还有发送邮件的任务;

● 依赖类型比较复杂,有小时级别依赖分钟任务,也有日周月季互相依赖的任务。

对于这种复杂的数据链路,之前我们采用oozie+python+shell解决,任务量有5000多个,维护困难,且遇到数据修复问题,难以迅速定位。为了解决这些问题,我们参考了oozie、airflow等开源软件,自主研发了新的任务调度系统。

在新的任务调度系统上,用户可以自助运维,对任务进行上线或者重跑,而且可以实时看到任务的运行日志。以前可能要登陆到集群机器上上查看日志,非常麻烦。

调度系统上线后,取得了非常好的效果:

● 任务配置简单,在图形上简单的拖曳即可操作。

● 提供常用的ETL组件,零编码。举个例子,以前发送数据邮件,需要自己写脚本,目前在我们界面只需配置收件人和数据表即可。

● 一键修复追溯,将排查问题修复数据的时间由一人天缩减到10分钟。

● 集群的资源总是紧张的,目前我们正在做的智能调度、错峰运行,保证高优先级任务优先运行。

Adhoc即席查询,之前我们使用的hue,速度比较慢。通过调研市面上的各种快速查询工具,我们采用了Presto和Spark SQL双引擎,架构图如图5所示:

图5 双引擎架构图

3.3 基础层

基础层偏重于集群底层能力的建设和完善。遇到的问题集中在两个方面:

● 任务量剧增,目前每天有一万多JOB,造成集群资源相当紧张,排队严重。

● 集群的数据安全需要规划,而且由于多个部门都在使用集群,之前未划分账号和队列,大家共同使用。 

针对这些问题,我们在基础层做了一些改进。

在集群性能优化方面,通过划分单独的账号队列,资源预留,保证核心作业的执行,同时与应用层的权限管理打通,对不同的目录按照用户归属限制不同的权限。随着集群数据的膨胀,不少冷数据无人管理,我们在梳理后,将冷数据迁移到AWS S3存储。

四、案例启示

● 传统企业或者初创团队如何快速落地大数据,首先要采用成熟的业界方案,大的互联网公司的做法可以直接借鉴,稳定的开源软件直接使用;其次要深入梳理公司业务,找到契合点,譬如链家网的房屋估价、个性化搜索、交叉报表分析。

● 面对公司业务的迅速增长,平台化思维是解决问题的一个法宝。首先要通过梳理用户的流程和使用习惯,将这些服务自动化,让用户能自助排查一些问题;其次平台化开发的产品,先得实实在在解决用户痛点问题,自己愿意使用,然后才能推广给其他人使用。

● 平台化的产品需要梳理清楚流程,制定规范。先通过梳理调研公司的现状,然后规范流程,当然梳理的过程比较痛苦,需要很多人配合;制定了标准以后,需要保证标准的权威性和执行力,可以成立公司级别的数据治理委员会,发布核心指标,保证流程的推广执行。

更多TOP100案例信息及日程请前往[官网]查阅。包含产品、团队、架构、运维、大数据、人工智能等多个技术专场,4天时间集中分享2017年最值得学习的100个研发案例实践。本平台共送出10张开幕式单天免费体验票,数量有限,先到先得。免费体验票申请入口

TOP100summit:【分享实录】链家网大数据平台体系构建历程的更多相关文章

  1. 海豚调度5月Meetup:6个月重构大数据平台,帮你避开调度升级改造/集群迁移踩过的坑

    当今许多企业都有着技术架构的DataOps程度不够.二次开发成本高.迁移成本高.集群部署混乱等情况,团队在技术选型之后发现并不适合自己的需求,但是迁移成本和难度又比较大,甚至前团队还留下了不少坑,企业 ...

  2. 携程实时大数据平台演进:1/3 Storm应用已迁到JStorm

    携程大数据平台负责人张翼分享携程的实时大数据平台的迭代,按照时间线介绍采用的技术以及踩过的坑.携程最初基于稳定和成熟度选择了Storm+Kafka,解决了数据共享.资源控制.监控告警.依赖管理等问题之 ...

  3. 大数据平台迁移实践 | Apache DolphinScheduler 在当贝大数据环境中的应用

    大家下午好,我是来自当贝网络科技大数据平台的基础开发工程师 王昱翔,感谢社区的邀请来参与这次分享,关于 Apache DolphinScheduler 在当贝网络科技大数据环境中的应用. 本次演讲主要 ...

  4. 分享系列--面试JAVA架构师--链家网

    本月7日去了一趟链家网面试,虽然没有面上,但仍有不少收获,在此做个简单的分享,当然了主要是分享给自己,让大家见笑了.因为这次是第一次面试JAVA网站架构师相关的职位,还是有些心虚的,毕竟之前大部分时间 ...

  5. Scrapy实战篇(一)之爬取链家网成交房源数据(上)

    今天,我们就以链家网南京地区为例,来学习爬取链家网的成交房源数据. 这里推荐使用火狐浏览器,并且安装firebug和firepath两款插件,你会发现,这两款插件会给我们后续的数据提取带来很大的方便. ...

  6. 使用python抓取并分析数据—链家网(requests+BeautifulSoup)(转)

    本篇文章是使用python抓取数据的第一篇,使用requests+BeautifulSoup的方法对页面进行抓取和数据提取.通过使用requests库对链家网二手房列表页进行抓取,通过Beautifu ...

  7. python链家网高并发异步爬虫asyncio+aiohttp+aiomysql异步存入数据

    python链家网二手房异步IO爬虫,使用asyncio.aiohttp和aiomysql 很多小伙伴初学python时都会学习到爬虫,刚入门时会使用requests.urllib这些同步的库进行单线 ...

  8. python链家网高并发异步爬虫and异步存入数据

    python链家网二手房异步IO爬虫,使用asyncio.aiohttp和aiomysql 很多小伙伴初学python时都会学习到爬虫,刚入门时会使用requests.urllib这些同步的库进行单线 ...

  9. Pyspider爬虫简单框架——链家网

    pyspider 目录 pyspider简单介绍 pyspider的使用 实战 pyspider简单介绍 一个国人编写的强大的网络爬虫系统并带有强大的WebUI.采用Python语言编写,分布式架构, ...

随机推荐

  1. Tomcat------如何配置域名和80端口

    1.打开Tomcat的默认安装路径下的Service.xml文件 路径:C:\Program Files\Apache Software Foundation\Tomcat 8.0\conf\Serv ...

  2. 恶劣条件下的apache配置(Linux)

    (本文出自yangjj ^_^)   前提:1.没联网,yum挂.2.至少要有GCC,要不玩个屁. 3.你有充足的咖啡并且有几个小时时间不想打dota. 4.你要做集群. 以上条件不满足其一,看到这里 ...

  3. logstash结合rsyslog,收集系统日志

    rsyslog是日志收集工具.如今非常多Linux都自带rsyslog,用其替换掉syslog.怎样安装rsyslog就不讲了.大概讲下原理.然后讲logstash的相关配置. rsyslog本身有一 ...

  4. ArcGIS应用

    1.ArcGIS Server发布资源报错:网络资源问题 有可能是跟网络相关的服务没有开启,开启相关服务器后有可能可以解决此问题. 还有可能通过此法解决:开始--控制面板--网络和共享中心--高级共享 ...

  5. Python 基础进阶

    函数的定义 函数的参数 函数的默认参数 函数的变量 函数的返回值 函数的多类型传值 函数的冗余参数 函数的递归调用 匿名函数 高阶函数 内建函数 模块与包 面向对象 类的定义 类的属性 类的内置属性 ...

  6. PHP 使用 Memcached

    PHP 想往 Memcached 中增删查改数据,需要先安装 memcache 扩展模块: cd /usr/local/src wget http://www.apelearn.com/bbs/dat ...

  7. Maven编译出现“[ERROR] java.lang.OutOfMemoryError: Java heap space”

    Windows下添加环境变量MAVEN_OPTS的value为-Xms1024m -Xmx1024m -Xss1m Linux下可修改.profile或者.bash_profile文件,并做如下设置: ...

  8. ARM+LINUX嵌入式系统的终端显示中文乱码解决

    前一段时间解决的一个问题,看起来是个小问题,实际解决这个问题却花了一个星期的晚上休息时间,记录分享一下. 问题描述: linux内核配置中NLS(native language support)已经选 ...

  9. 在MVC中实现和网站不同服务器的批量文件下载以及NPOI下载数据到Excel的简单学习

    嘿嘿,我来啦,最近忙啦几天,使用MVC把应该实现的一些功能实现了,说起来做项目,实属感觉蛮好的,即可以学习新的东西,又可以增加自己之前知道的知识的巩固,不得不说是双丰收啊,其实这周来就开始面对下载在挣 ...

  10. 【摘】50个jQuery代码段帮助你成为一个更好的JavaScript开发者

    今 天的帖子会给你们展示50个jQuery代码片段,这些代码能够给你的JavaScript项目提供帮助.其中的一些代码段是从jQuery1.4.2才 开始支持的做法,另一些则是真正有用的函数或方法,他 ...