线性代数之SVD与PCA
[作者:byeyear Email:east3@163.com 首发www.cnblogs.com 转载请注明]
回忆学校的美好时光,一起来复习下曾经的课程吧。
1. SVD推荐ams上的一篇文章:
http://www.ams.org/samplings/feature-column/fcarc-svd
下面的文字为简短摘要。
我们知道,如果矩阵A有一组特征值λk和特征向量vk,那么下式成立:
Avk=λvk
矩阵的奇异值σ满足类似的式子,如下所示:
Avk=σkuk
各单位向量vk相互正交;各单位向量uk也相互正交。
以二阶矩阵为例,它有两个奇异值σ1,σ2:
Av1=σ1u1
Av2=σ2u2
v1和v2正交,u1和u2正交,且均为单位向量。对于R2中的任意向量x,若将其投影到span{v1,v2},那么:
Ax=A[(v1·x)v1+(v2·x)v2]
=(v1·x)Av1+(v2·x)Av2
=(v1·x)σ1u1+(v2·x)σ2u2
=u1σ1v1Tx+u2σ2v2Tx // 此处利用了mTnp=pmTn,p,m,n为同阶向量
因此A=u1σ1v1T+u2σ2v2T
写成更一般的矩阵形式,就是:
A=UΣV
其中:
A是mxn矩阵
U=[u1 u2 ... um],是mxm方阵
Σ是主对角线为σ1 ... σn的mxn准对角矩阵
V=[v1 v2 ... vn],是nxn方阵
线性代数之SVD与PCA的更多相关文章
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 线性代数之——SVD 分解
SVD 分解是线性代数的一大亮点. 1. SVD 分解 \(A\) 是任意的 \(m×n\) 矩阵,它的秩为 \(r\),我们要对其进行对角化,但不是通过 \(S^{-1}A S\).\(S\) 中的 ...
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- PCA, SVD以及代码示例
本文是对PCA和SVD学习的整理笔记,为了避免很多重复内容的工作,我会在介绍概念的时候引用其他童鞋的工作和内容,具体来源我会标记在参考资料中. 一.PCA (Principle component a ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- PCA,SVD
PCA的数学原理 https://www.zhihu.com/question/34143886/answer/196294308 奇异值分解的揭秘(二):降维与奇异向量的意义 奇异值分解的揭秘(一) ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- PCA算法和SVD
如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值.这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩 ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
随机推荐
- [.NET MVC4 入门系列01]Helloworld MVC 4 第一个MVC4程序
[.NET MVC4 入门系列01]Helloworld MVC 4 第一个MVC4程序 一.练习项目: http://www.asp.net/mvc/tutorials/mvc-4/gettin ...
- Dash:程序员的好帮手(转载)
作为一名死coder,每天最常见的动作就是查看各种API文档,你一定也有过同时打开N个窗口(HTML.PDF.CHM),不停的在编辑器与文档之间切换的感受吧?怎么说呢,其实我很讨厌这种枯燥无味的动作, ...
- (C/C++学习笔记) 十二. 指针
十二. 指针 ● 基本概念 位系统下为4字节(8位十六进制数),在64位系统下为8字节(16位十六进制数) 进制表示的, 内存地址不占用内存空间 指针本身是一种数据类型, 它可以指向int, char ...
- CriticalSection 临界区
// 临界区.cpp : 定义控制台应用程序的入口点.// #include "stdafx.h"#include<windows.h>#include<iost ...
- Python 编码问题(十四)
一.了解字符编码的知识储备 1. 文本编辑器存取文件的原理(nodepad++,pycharm,word) 打开编辑器就打开了启动了一个进程,是在内存中的,所以在编辑器编写的内容也都是存放与内存中的, ...
- python __new__ __init__
写过python类的都会知道__init__,可能也了解__new__.我之前也了解__new__,但只做的它发生在__init__之前.其他的就比较模糊了 今天在学习单例模式时,看到有人用__new ...
- 使用Arduino模块实施无线信号的重放攻击
无线电已经存在使用了很长一段时间,在这很长的一段时间里诞生了一个名叫火腿族的集体(小编:嗯 对 就是整天吃火腿的那些人^_^ CQ CQ ).无线电和互联网一样:同样存在一些安全隐患,比如:在无线信 ...
- Spring JdbcTemplate中的回调
回调 JdbcTemplate类支持的回调类: 1.预编译语句及存储过程创建回调:用于根据JdbcTemplate提供的连接创建相应的语句: 1.1 PreparedStatementCreator ...
- NBUT 1220 SPY 2010辽宁省赛
Time limit 1000 ms Memory limit 131072 kB The National Intelligence Council of X Nation receives a ...
- OC基础知识总结 分类: ios学习 OC 2015-06-26 17:58 58人阅读 评论(0) 收藏
//OC: Objective-C, 面向对象的C语言 //OC与C的区别 //1.OC是C的超集, C语言的所有语法都可以在OC中使用 //2.OC是面向对象 //3.OC是一门运行时语言 //4. ...